【題目】下列命題錯誤的是 ( )

A. 如果平面平面,那么平面內一定存在直線平行于平面

B. 如果平面不垂直平面,那么平面內一定不存在直線垂直于平面

C. 如果平面平面,平面平面,且,那么

D. 如果平面平面,那么平面內所有直線都垂直于平面

【答案】D

【解析】由題意可知: 、結合實物:教室的門面與地面垂直,門面的上棱對應的直線就與地面平行,故此命題成立; 、假若平面內存在直線垂直于平面,根據(jù)面面垂直的判定定理可知兩平面垂直,故此命題成立; 、結合面面垂直的性質可以分別在、內作異于的直線垂直于交線,再由線面垂直的性質定理可知所作的垂線平行,進而得到線面平行再由線面平行的性質可知所作的直線與平行,又∵兩條平行線中的一條垂直于平面那么另一條也垂直于平面,故命題成立; 、舉反例:教室內側墻面與地面垂直,而側墻面內有很多直線是不垂直與地面的,故此命題錯誤,故選.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知向量a=(cos α,sin α),b=(cos β,sin β),c=(-1,0).

(1) 求向量bc的模的最大值;

(2) 若α=,且a⊥(bc),求cos β的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】傳承傳統(tǒng)文化再掀熱潮,央視科教頻道以詩詞知識競賽為主的《中國詩詞大會》火爆熒屏,將中學組和大學組的參賽選手按成績分為優(yōu)秀、良好、一般三個等級,隨機從中抽取了100名選手進行調查,下面是根據(jù)調查結果繪制的選手等級人數(shù)的條形圖.

(1)若將一般等級和良好等級合稱為合格等級,根據(jù)已知條件完成下面的列聯(lián)表,并據(jù)此資料你是否有95%的把握認為選手成績“優(yōu)秀”與文化程度有關?

(2)若參賽選手共6萬人,用頻率估計概率,試估計其中優(yōu)秀等級的選手人數(shù);

(3)在優(yōu)秀等級的選手中取6名,依次編號為1,2,3,4,5,6,在良好等級的選手中取6名,依次編號為1,2,3,4,5,6,在選出的6名優(yōu)秀等級的選手中任取一名,記其編號為,在選出的6名良好等級的選手中任取一名,記其編號為,求使得方程組有唯一一組實數(shù)解的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】空氣質量指數(shù)(Air Quality Index,簡稱)是定量描述空氣質量狀況的指數(shù),空氣質量按照大小分為六級,為優(yōu);為輕度污染;為中度污染;為重度污染;為嚴重污染.一環(huán)保人士記錄去年某地某月10天的的莖葉圖如右.

(1)利用該樣本估計該地本月空氣質量優(yōu)良()的天數(shù);(按這個月總共30天計算)

(2)將頻率視為概率,從本月中隨機抽取3天,記空氣質量優(yōu)良的天數(shù)為,求的概率分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】關于空間直角坐標系中的一點,有下列說法:

①點到坐標原點的距離為

的中點坐標為;

③點關于軸對稱的點的坐標為;

④點關于坐標原點對稱的點的坐標為;

⑤點關于坐標平面對稱的點的坐標為.

其中正確的個數(shù)是

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列正確命題有__________

①“”是“”的充分不必要條件

②如果命題“”為假命題,則中至多有一個為真命題

③設,若,則的最小值為

④函數(shù)上存在,使,則a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某同學在研究性學習中,關于三角形與三角函數(shù)知識的應用(約定三內角所對的邊分別是)得出如下一些結論:

1是鈍角三角形,則;

(2)若是銳角三角形,則;

(3)在三角形中,若,則

(4)在中,若,則

其中錯誤命題的個數(shù)是 ( )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在五棱錐中,平面平面,且

1已知點在線段上,確定的位置,使得平面;

2分別在線段上,若沿直線將四邊形向上翻折,恰好重合,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】關于函數(shù),有下列結論:

的最大值為

的最小正周期是;

在區(qū)間上是減函數(shù);

④直線是函數(shù)的一條對稱軸方程.

其中正確結論的序號是__________

查看答案和解析>>

同步練習冊答案