【題目】已知向量a=(cos α,sin α),b=(cos β,sin β),c=(-1,0).

(1) 求向量bc的模的最大值;

(2) 若α=,且a⊥(bc),求cos β的值.

【答案】(1)2(2)見解析

【解析】試題分析(1)根據(jù)向量加法坐標(biāo)表示以及向量模的坐標(biāo)表示可得|bc|2=2(1-cos β),再根據(jù)三角函數(shù)有界性可得模的最值(2)由向量垂直可得數(shù)量積為零,根據(jù)向量數(shù)量積坐標(biāo)表示可得關(guān)于β的方程,解得β值 ,即得cos β的值.

試題解析:解:(1) bc=(cos β-1,sin β),則|bc|2=(cos β-1)2+sin2β=2(1-cos β).

∵ -1≤cos β≤1,

∴ 0≤|bc|2≤4,即0≤|bc|≤2.

當(dāng)cos β=-1時,|bc|取最大值2,

∴ 向量bc的模的最大值為2.

(2) ∵ bc=(cos β-1,sin β),

a·(bc)=cos αcos β-cos α+sin αsin β

=cos(α-β)-cos α.

a⊥(bc),

a·(bc)=0,即cos(α-β)=cos α.

又α=,∴ cos=cos,β-=2kπ± (k∈Z),

∴ β=2kπ+或β=2kπ,k∈Z,

∴ cos β=0或cos β=1.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐的底面是矩形,平面平面的中點,且.

I)求證:平面;

II)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,多面體中,面為矩形,,且

(1)求證:平面;

(2)求所成角的余弦值;

(3)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)=為奇函數(shù).

(1) 求a的值;

(2) 判斷f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)處的切線方程為.

1的值;

2求函數(shù)的極值.

3是單調(diào)函數(shù),求的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校100名學(xué)生其中考試語文成績的頻率分布直方圖所示,其中成績分組區(qū)間是:

.

(1)求圖中的值;

(2)根據(jù)頻率分布直方圖,估計這100名學(xué)生語文成績的平均分;

(3)若這100名學(xué)生語文某些分?jǐn)?shù)段的人數(shù)與數(shù)學(xué)成績相應(yīng)分?jǐn)?shù)段的人數(shù)之比如下表所示,

求數(shù)學(xué)成績在之外的人數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列滿足,其中 .

(1)求, , ,并猜想的表達式(不必寫出證明過程);

(2)設(shè),數(shù)列的前項和為,求證: .

(B)已知數(shù)列的前項和為,且滿足 .

(1)求, ,并猜想的表達式(不必寫出證明過程);

(2)設(shè) ,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知平行四邊形,,的中點,且△是等邊三角形,沿把△折起至的位置,使得

1是線段的中點,求證平面

2求證:;

3求點到平面的距離

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題錯誤的是 ( )

A. 如果平面平面,那么平面內(nèi)一定存在直線平行于平面

B. 如果平面不垂直平面,那么平面內(nèi)一定不存在直線垂直于平面

C. 如果平面平面,平面平面,且,那么

D. 如果平面平面,那么平面內(nèi)所有直線都垂直于平面

查看答案和解析>>

同步練習(xí)冊答案