【題目】在長方體ABCD﹣A1B1C1D1中,底面ABCD是邊長為2的正方形,E是AB的中點,F是BC的中點
(1)求證:EF∥平面A1DC1;
(2)若長方體ABCD﹣A1B1C1D1中,夾在平面A1DC1與平面B1EF之間的幾何體的體積為,求點D到平面B1EF的距離.
【答案】(1)證明見詳解;(2)2.
【解析】
(1)因為//,由線線平行,即可推證線面平行;
(2)先根據(jù)幾何體的體積求解出長方體的高,再用等體積法求得點到面的距離即可.
(1)證明:由題意,連接AC,如下圖所示:
∵E是AB的中點,F是BC的中點,
∴EF∥AC,
∵四邊形ACC1A1是平行四邊形,
∴AC∥A1C1,
∴EF∥A1C1,
∵A1C1平面A1DC1,
∴EF∥平面A1DC1,即證.
(2)由題意,設(shè)長方體的高為h.
∵22=2,
∴hh.
∵S△BEF11,
∴S△BEFhhh.
∵22h=4h,
∴4hhhh,
解得h=2.
又∵EF,DE=DF,
容易知S△DEF.
∴S△DEFB1B2.
∵EF,B1E=B1F,
∴S△DEF.
設(shè)點D到平面B1EF的距離為d.
∵,
∴d,
解得d=2.
∴點D到平面B1EF的距離為2.
科目:高中數(shù)學 來源: 題型:
【題目】設(shè),函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)設(shè),若有兩個相異零點,,且,求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】自由購是一種通過自助結(jié)算購物的形式.某大型超市為調(diào)查顧客自由購的使用情況,隨機抽取了100人,調(diào)查結(jié)果整理如下:
20以下 | [20,30) | [30,40) | [40,50) | [50,60) | [60,70] | 70以上 | |
使用人數(shù) | 3 | 12 | 17 | 6 | 4 | 2 | 0 |
未使用人數(shù) | 0 | 0 | 3 | 14 | 36 | 3 | 0 |
(1)現(xiàn)隨機抽取1名顧客,試估計該顧客年齡在[30,50)且未使用自由購的概率;
(2)從被抽取的年齡在[50,70]使用的自由購顧客中,隨機抽取2人進一步了解情況,求這2人年齡都在[50,60)的概率;
(3)為鼓勵顧客使用自由購,該超市擬對使用自由購顧客贈送1個環(huán)保購物袋.若某日該超市預計有5000人購物,試估計該超市當天至少應準備多少個環(huán)保購物袋?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】現(xiàn)有(n≥2,n∈N*)個給定的不同的數(shù)隨機排成一個下圖所示的三角形數(shù)陣:
設(shè)Mk是第k行中的最大數(shù),其中1≤k≤n,k∈N*.記M1<M2<…<Mn的概率為pn.
(1)求p2的值;
(2)證明:pn>.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知橢圓的離心率為且右焦點到右準線的距離為.
(1)求橢圓的標準方程:
(2)過點的直線與橢圓交于兩點,與交于點是弦的中點,直線與交于點.若與的面積之比是,求的長度.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知a,b,c分別為△ABC三個內(nèi)角A,B,C的對邊,2bcosA=acosC+ccosA.
(1)求角A的大。
(2)若a=3,△ABC的周長為8,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x2﹣2acoskπlnx(k∈N*,a∈R且a>0).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若k=2018,關(guān)于x的方程f(x)=2ax有唯一解,求a的值;
(3)當k=2019時,證明:對一切x∈(0,+∞),都有成立.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】我國南北朝時期數(shù)學家、天文學家——祖暅,提出了著名的祖暅原理:“冪勢既同,則積不容異也”.“冪”是截面積,“勢”是幾何體的高,意思是兩等高幾何體,若在每一等高處的兩截面面積都相等,則兩幾何體體積相等.已知某不規(guī)則幾何體與如圖三視圖所對應的幾何體滿足祖暅原理,則該不規(guī)則幾何體的體積為( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com