9.在△ABC中,角A,B,C的對邊分別是a,b,c,若c=5,S△ABC=10$\sqrt{3}$,B=$\frac{π}{3}$,則△ABC的周長為( 。
A.22B.20C.17D.16

分析 由已知利用三角形面積公式可求a的值,進而利用余弦定理可求b的值,即可得解.

解答 解:在△ABC中,∵c=5,B=$\frac{π}{3}$,S△ABC=10$\sqrt{3}$=$\frac{1}{2}$acsinB=$\frac{1}{2}×a×5×\frac{\sqrt{3}}{2}$,
∴a=8,
∴由余弦定理可得:b=$\sqrt{{a}^{2}+{c}^{2}-2accosB}$=$\sqrt{{8}^{2}+{5}^{2}-2×8×5×\frac{1}{2}}$=7,
∴△ABC的周長為5+8+7=20.
故選:B.

點評 本題主要考查了三角形面積公式,余弦定理在解三角形中的應用,考查了轉化思想,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

6.(x2+3x-y)5的展開式中,x5y2的系數(shù)為( 。
A.-90B.-30C.30D.90

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.下列命題中,真命題是(  )
A.?x∈R,2x>x2B.?x∈R,ex<0
C.若a>b,c>d,則a-c>b-dD.ac2>bc2是a>b的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.直線mx+(m+2)y-1=0與直線(m-1)x+my=0互相垂直,則m=0或-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知雙曲線C1:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$一焦點與拋物線y2=8x的焦點F相同,若拋物線y2=8x的焦點到雙曲線C1的漸近線的距離為1,P為雙曲線左支上一動點,Q(1,3),則|PF|+|PQ|的最小值為(  )
A.4$\sqrt{2}$B.4$\sqrt{3}$C.4D.2$\sqrt{3}+3\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知橢圓C的對稱中心為坐標原點O,焦點在x軸上,左右焦點分別為F1,F(xiàn)2,上頂點和右頂點分別為B,A,線段AB的中點為D,且${k_{DD}}•{k_{AN}}=\frac{1}{2}$,△AOB的面積為$2\sqrt{2}$.
(1)求橢圓C的方程;
(2)過F1的直線l與橢圓C相交于M,N兩點,若△MF2N的面積為$\frac{16}{3}$,求以F2為圓心且與直線l相切的圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.若x,y∈R,且滿足$\left\{\begin{array}{l}x≥1\\ x-2y+3≥0\\ y≥x\end{array}$則z=2x+3y的最大值等于15.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知曲線C的極坐標方程為${ρ^2}=\frac{36}{{4{{cos}^2}θ+9{{sin}^2}θ}}$,若P(x,y)是曲線C上的一個動點,則3x+4y的最大值為$\sqrt{145}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.學校藝術節(jié)對A,B,C,D四件參賽作品只評一件一等獎,在評獎揭曉前,甲,乙,丙,丁四位同學對這四件參賽作品預測如下:甲說:“是C或D作品獲得一等獎”;乙說:“B作品獲得一等獎”;丙說:“A,D兩件作品未獲得一等獎”;丁說:“是C作品獲得一等獎”.
評獎揭曉后,發(fā)現(xiàn)這四位同學中只有兩位說的話是對的,則獲得一等獎的作品是B.

查看答案和解析>>

同步練習冊答案