已知函數(shù)f(x)=kx+b(k≠0,1).
(1)求f(f(f(x)));
(2)求f(f(f(…f(x))).
考點:函數(shù)的值
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用函數(shù)的性質(zhì)求解.
解答: 解:(1)∵f(x)=kx+b,
∴f(f(x))=f(kx+b)=k2x+kb+b,
f(f(f(x)))=f(k2x+kb+b)=k3x+k2b+kb+b.
(2)由(1)知f(f(f(…f(x)))
=knx+kn-1b+kn-2b+…+kb+b.
點評:本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時要注意函數(shù)性質(zhì)的合理運用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

在三角形ABC中,如果a2+c2-b2=ac,那么B等于( 。
A、30°B、60°
C、120°D、150°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)集合M={x|x≤
2
},N={1,2,3,4},則M∩N的運算結(jié)果為( 。
A、{1}
B、{3,4}
C、{2,3,4}
D、{1,2,3,4}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)已知集合A={a2,a+1,-3},B={a-3,2a-1,a2+1},若A∩B={-3},求實數(shù)a的值
(2)已知集合A={x|x2-5x-6=0},集合B={x|mx+1=0}若A∪B=A,求實數(shù)m組成的集合.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
a
=(sinωx,
3
sinωx),
b
=(sinωx,cosωx)(ω>0),函數(shù)f(x)=
a
b
-
1
2
,且f(x)的最小正周期為π.
(Ⅰ)求ω的值;
(Ⅱ)求函數(shù)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

解關(guān)于x的不等式ax2-2x>ax-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,正三棱柱ABC-A1B1C1中,點M是BC的中點,AB=2,BB1=
3

(Ⅰ)求直線B1M與平面AB1C1所成角的正弦;
(Ⅱ)求異面直線B1M與AC的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)的定義域為(-1,1),求g(x)=f(a+x)+f(a-x)的定義域(-
1
2
<a<
1
2
).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

化簡:
(1)
sin3(-α)cos(5π+α)tan(2π+α)
cos3(-α-2π)sin(-α-3π)tan3(α-4π)
;
(2)
1-2sin10°cos10°
sin170°-
1-sin2170°

查看答案和解析>>

同步練習冊答案