【題目】已知拋物線上的點到焦點的距離為

(1)求,的值;

(2)設(shè)是拋物線上分別位于軸兩側(cè)的兩個動點,且,其中為坐標(biāo)原點.求證:直線過定點,并求出該定點的坐標(biāo).

【答案】1,.(2)直線過定點

【解析】

試題(1)從題意出發(fā),由拋物線的定義可得,再把點坐標(biāo)代入拋物線方程可得值;(2)這是直線與拋物線相交問題,由于直線可能與軸垂直,因此設(shè)直線方程為,同時設(shè),,由直線方程與拋物線方程聯(lián)立可消去的方程,從而可得,再由,可得,這樣有,直線方程為,可見它過定點

試題解析:(1)由拋物線定義得,,即,

所以拋物線方程為,代入點,可解得

2)設(shè)直線的方程為,,

聯(lián)立,消元得,則,

,得,所以(舍去),

,即,所以直線的方程為,

所以直線過定點

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的長軸長是短軸長的2倍,且過點

⑴求橢圓的方程;

⑵若在橢圓上有相異的兩點三點不共線),為坐標(biāo)原點,且直線,直線直線的斜率滿足.

(。┣笞C: 是定值;

(ⅱ)設(shè)的面積為,當(dāng)取得最大值時,求直線的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)如果對于任意的,恒成立,求實數(shù)的取值范圍;

III)設(shè)函數(shù), ,過點作函數(shù)的圖象的所有切線,令各切點的橫坐標(biāo)按從小到大構(gòu)成數(shù)列,求數(shù)列的所有項之和的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為為參數(shù),以坐標(biāo)原點O為極點,以x軸正半軸為極軸的極坐標(biāo)系中,曲線C的極坐標(biāo)方程為

求直線l的普通方程及曲線C的直角坐標(biāo)方程;

若直線l與曲線C交于A,B兩點,求線段AB的中點P到坐標(biāo)原點O的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知矩陣.

1)求直線對應(yīng)的變換作用下所得的曲線方程;

2)求矩陣的特征值與特征向量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三棱錐底面的3個頂點在球的同一個大圓上,且為正三角形,為該球面上的點,若三棱錐體積的最大值為,則球的表面積為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中,角、所對的邊分別為、、,給出四個命題:

(1)若,則為等腰三角形;

(2)若,則為直角三角形;

(3)若,則為等腰直角三角形;

(4)若,則為正三角形;

以上正確命題的個數(shù)是(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某沿海地區(qū)的海岸線為一段圓弧,對應(yīng)的圓心角,該地區(qū)為打擊走私,在海岸線外側(cè)海里內(nèi)的海域對不明船只進行識別查證(如圖:其中海域與陸地近似看作在同一平面內(nèi)),在圓弧的兩端點、分別建有監(jiān)測站,之間的直線距離為海里.

1)求海域的面積;

2)現(xiàn)海上點處有一艘不明船只,在點測得其距海里,在點測得其距海里.判斷這艘不明船只是否進入了海域?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知樣本

10.1

8.7

6.4

10.5

13.0

8.3

10.0

12.4

8.0

9.0

11.2

9.3

12.7

9.6

10.6

11.0

那么其分位數(shù)和分位數(shù)分別是(

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案