【題目】在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為為參數(shù),以坐標(biāo)原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸的極坐標(biāo)系中,曲線C的極坐標(biāo)方程為

求直線l的普通方程及曲線C的直角坐標(biāo)方程;

若直線l與曲線C交于A,B兩點(diǎn),求線段AB的中點(diǎn)P到坐標(biāo)原點(diǎn)O的距離.

【答案】(1),(2)

【解析】

(I)將代入,即可得到直線的普通方程,利用極坐標(biāo)與直角坐標(biāo)的互化公式,即可得到曲線C的直角坐標(biāo)方程;

(II)將直線的參數(shù)方程代入曲線的直角坐標(biāo)方程,利用韋達(dá)定理和參數(shù)的幾何意義,即可求解點(diǎn)到原點(diǎn)的距離.

解:(I)將代入,整理得,

所以直線的普通方程為.

,

,代入,

即曲線的直角坐標(biāo)方程為.

(II)設(shè),的參數(shù)分別為,.

將直線的參數(shù)方程代入曲線的直角坐標(biāo)方程得,

化簡(jiǎn)得,

由韋達(dá)定理得

于是.

設(shè),則

.

所以點(diǎn)到原點(diǎn)的距離為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知以點(diǎn)CtRt0)為圓心的圓與x軸交于點(diǎn)O和點(diǎn)A,與y軸交于點(diǎn)O和點(diǎn)B,其中O為原點(diǎn).

1)求證:OAB的面積為定值;

2)設(shè)直線y=-2x4與圓C交于點(diǎn)M,N,若OMON,求圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線的右頂點(diǎn)到其一條漸近線的距離等于,拋物線的焦點(diǎn)與雙曲線的右焦點(diǎn)重合,則拋物線上的動(dòng)點(diǎn)到直線距離之和的最小值為( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)命題p:實(shí)數(shù)x滿足x24ax+3a20a0),命題q:實(shí)數(shù)x滿足x25x+60

1)若a1,且pq為真命題,求實(shí)數(shù)x的取值范圍;

2)若pq的必要不充分條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】己知函數(shù).

1)當(dāng)時(shí),求函數(shù)的圖象在處的切線方程;

2)求函數(shù)的單調(diào)區(qū)間;

3)是否存在整數(shù)使得函數(shù)的極大值大于零,若存在,求的最小整數(shù)值,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】進(jìn)入冬天,大氣流動(dòng)性變差,容易形成霧握天氣,從而影響空氣質(zhì)量.某城市環(huán)保部門試圖探究車流量與空氣質(zhì)量的相關(guān)性,以確定是否對(duì)車輛實(shí)施限行.為此,環(huán)保部門采集到該城市過(guò)去一周內(nèi)某時(shí)段車流量與空氣質(zhì)量指數(shù)的數(shù)據(jù)如下表:

時(shí)間

周一

周二

周三

周四

周五

周六

周日

車流量(x萬(wàn)輛)

10

9

9.5

10.5

11

8

8.5

空氣質(zhì)量指數(shù)y

78

76

77

79

80

73

75

(1)根據(jù)表中周一到周五的數(shù)據(jù),求關(guān)于的線性回歸方程;

(2)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)2,則認(rèn)為得到的線性回歸方程是可靠的.請(qǐng)根據(jù)周六和周日數(shù)據(jù),判定所得的線性回歸方程是否可靠?

附:回歸方程中斜率和截距最小二乘估計(jì)公式分別為:

其中:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線上的點(diǎn)到焦點(diǎn)的距離為

(1)求,的值;

(2)設(shè),是拋物線上分別位于軸兩側(cè)的兩個(gè)動(dòng)點(diǎn),且,其中為坐標(biāo)原點(diǎn).求證:直線過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義區(qū)間、、、的長(zhǎng)度均為,已知不等式的解集為.

(1)求的長(zhǎng)度;

(2)函數(shù),)的定義域與值域都是),求區(qū)間的最大長(zhǎng)度;

(3)關(guān)于的不等式的解集為,若的長(zhǎng)度為6,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著改革開(kāi)放的不斷深入,祖國(guó)不斷富強(qiáng),人民的生活水平逐步提高,為了進(jìn)一步改善民生,日起我國(guó)實(shí)施了個(gè)人所得稅的新政策,其政策的主要內(nèi)容包括:(1)個(gè)稅起征點(diǎn)為元;(2)每月應(yīng)納稅所得額(含稅)收入個(gè)稅起征點(diǎn)專項(xiàng)附加扣除;(3)專項(xiàng)附加扣除包括①贍養(yǎng)老人費(fèi)用②子女教育費(fèi)用③繼續(xù)教育費(fèi)用④大病醫(yī)療費(fèi)用等,其中前兩項(xiàng)的扣除標(biāo)準(zhǔn)為:①贍養(yǎng)老人費(fèi)用:每月扣除元②子女教育費(fèi)用:每個(gè)子女每月扣除

新個(gè)稅政策的稅率表部分內(nèi)容如下:

級(jí)數(shù)

一級(jí)

二級(jí)

三級(jí)

四級(jí)

每月應(yīng)納稅所得額(含稅)

不超過(guò)元的部分

超過(guò)元至元的部分

超過(guò)元至元的部分

超過(guò)元至元的部分

稅率

(1)現(xiàn)有李某月收入元,膝下有一名子女,需要贍養(yǎng)老人,(除此之外,無(wú)其它專項(xiàng)附加扣除)請(qǐng)問(wèn)李某月應(yīng)繳納的個(gè)稅金額為多少?

(2)現(xiàn)收集了某城市名年齡在歲到歲之間的公司白領(lǐng)的相關(guān)資料,通過(guò)整理資料可知,有一個(gè)孩子的有人,沒(méi)有孩子的有人,有一個(gè)孩子的人中有人需要贍養(yǎng)老人,沒(méi)有孩子的人中有人需要贍養(yǎng)老人,并且他們均不符合其它專項(xiàng)附加扣除(受統(tǒng)計(jì)的人中,任何兩人均不在一個(gè)家庭).若他們的月收入均為元,試求在新個(gè)稅政策下這名公司白領(lǐng)的月平均繳納個(gè)稅金額為多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案