【題目】在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為為參數(shù),以坐標(biāo)原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸的極坐標(biāo)系中,曲線C的極坐標(biāo)方程為.
求直線l的普通方程及曲線C的直角坐標(biāo)方程;
若直線l與曲線C交于A,B兩點(diǎn),求線段AB的中點(diǎn)P到坐標(biāo)原點(diǎn)O的距離.
【答案】(1),(2)
【解析】
(I)將代入,即可得到直線的普通方程,利用極坐標(biāo)與直角坐標(biāo)的互化公式,即可得到曲線C的直角坐標(biāo)方程;
(II)將直線的參數(shù)方程代入曲線的直角坐標(biāo)方程,利用韋達(dá)定理和參數(shù)的幾何意義,即可求解點(diǎn)到原點(diǎn)的距離.
解:(I)將代入,整理得,
所以直線的普通方程為.
由得,
將,代入,
得,
即曲線的直角坐標(biāo)方程為.
(II)設(shè),的參數(shù)分別為,.
將直線的參數(shù)方程代入曲線的直角坐標(biāo)方程得,
化簡(jiǎn)得,
由韋達(dá)定理得,
于是.
設(shè),則
則.
所以點(diǎn)到原點(diǎn)的距離為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知以點(diǎn)C(t∈R,t≠0)為圓心的圓與x軸交于點(diǎn)O和點(diǎn)A,與y軸交于點(diǎn)O和點(diǎn)B,其中O為原點(diǎn).
(1)求證:△OAB的面積為定值;
(2)設(shè)直線y=-2x+4與圓C交于點(diǎn)M,N,若OM=ON,求圓C的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線的右頂點(diǎn)到其一條漸近線的距離等于,拋物線的焦點(diǎn)與雙曲線的右焦點(diǎn)重合,則拋物線上的動(dòng)點(diǎn)到直線和距離之和的最小值為( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)命題p:實(shí)數(shù)x滿足x2﹣4ax+3a2<0(a>0),命題q:實(shí)數(shù)x滿足x2﹣5x+6<0.
(1)若a=1,且p∧q為真命題,求實(shí)數(shù)x的取值范圍;
(2)若p是q的必要不充分條件,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】己知函數(shù).
(1)當(dāng)時(shí),求函數(shù)的圖象在處的切線方程;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)是否存在整數(shù)使得函數(shù)的極大值大于零,若存在,求的最小整數(shù)值,若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】進(jìn)入冬天,大氣流動(dòng)性變差,容易形成霧握天氣,從而影響空氣質(zhì)量.某城市環(huán)保部門試圖探究車流量與空氣質(zhì)量的相關(guān)性,以確定是否對(duì)車輛實(shí)施限行.為此,環(huán)保部門采集到該城市過(guò)去一周內(nèi)某時(shí)段車流量與空氣質(zhì)量指數(shù)的數(shù)據(jù)如下表:
時(shí)間 | 周一 | 周二 | 周三 | 周四 | 周五 | 周六 | 周日 |
車流量(x萬(wàn)輛) | 10 | 9 | 9.5 | 10.5 | 11 | 8 | 8.5 |
空氣質(zhì)量指數(shù)y | 78 | 76 | 77 | 79 | 80 | 73 | 75 |
(1)根據(jù)表中周一到周五的數(shù)據(jù),求關(guān)于的線性回歸方程;
(2)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)2,則認(rèn)為得到的線性回歸方程是可靠的.請(qǐng)根據(jù)周六和周日數(shù)據(jù),判定所得的線性回歸方程是否可靠?
附:回歸方程中斜率和截距最小二乘估計(jì)公式分別為:
其中:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線上的點(diǎn)到焦點(diǎn)的距離為.
(1)求,的值;
(2)設(shè),是拋物線上分別位于軸兩側(cè)的兩個(gè)動(dòng)點(diǎn),且,其中為坐標(biāo)原點(diǎn).求證:直線過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義區(qū)間、、、的長(zhǎng)度均為,已知不等式的解集為.
(1)求的長(zhǎng)度;
(2)函數(shù)(,)的定義域與值域都是(),求區(qū)間的最大長(zhǎng)度;
(3)關(guān)于的不等式的解集為,若的長(zhǎng)度為6,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著改革開(kāi)放的不斷深入,祖國(guó)不斷富強(qiáng),人民的生活水平逐步提高,為了進(jìn)一步改善民生,年月日起我國(guó)實(shí)施了個(gè)人所得稅的新政策,其政策的主要內(nèi)容包括:(1)個(gè)稅起征點(diǎn)為元;(2)每月應(yīng)納稅所得額(含稅)收入個(gè)稅起征點(diǎn)專項(xiàng)附加扣除;(3)專項(xiàng)附加扣除包括①贍養(yǎng)老人費(fèi)用②子女教育費(fèi)用③繼續(xù)教育費(fèi)用④大病醫(yī)療費(fèi)用等,其中前兩項(xiàng)的扣除標(biāo)準(zhǔn)為:①贍養(yǎng)老人費(fèi)用:每月扣除元②子女教育費(fèi)用:每個(gè)子女每月扣除元
新個(gè)稅政策的稅率表部分內(nèi)容如下:
級(jí)數(shù) | 一級(jí) | 二級(jí) | 三級(jí) | 四級(jí) | |
每月應(yīng)納稅所得額(含稅) | 不超過(guò)元的部分 | 超過(guò)元至元的部分 | 超過(guò)元至元的部分 | 超過(guò)元至元的部分 | |
稅率 |
(1)現(xiàn)有李某月收入元,膝下有一名子女,需要贍養(yǎng)老人,(除此之外,無(wú)其它專項(xiàng)附加扣除)請(qǐng)問(wèn)李某月應(yīng)繳納的個(gè)稅金額為多少?
(2)現(xiàn)收集了某城市名年齡在歲到歲之間的公司白領(lǐng)的相關(guān)資料,通過(guò)整理資料可知,有一個(gè)孩子的有人,沒(méi)有孩子的有人,有一個(gè)孩子的人中有人需要贍養(yǎng)老人,沒(méi)有孩子的人中有人需要贍養(yǎng)老人,并且他們均不符合其它專項(xiàng)附加扣除(受統(tǒng)計(jì)的人中,任何兩人均不在一個(gè)家庭).若他們的月收入均為元,試求在新個(gè)稅政策下這名公司白領(lǐng)的月平均繳納個(gè)稅金額為多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com