3.以圍墻為一邊,用籬笆圍成長方形的場地(如圖),已知籬笆長為定值12.
(1)寫出場地面積y與邊長x的函數(shù);
(2)指出函數(shù)的定義域;
(3)這塊地長寬各為多少時(shí),場地的面積最大?最大值為多少?

分析 (1)由題意設(shè)長方形場地的寬為x,則長為12-3x,表示出面積y;
(2)由x>0,且12-3x>0,可得函數(shù)的定義域;
(3)對其進(jìn)行配方求出函數(shù)的最值即場地的面積最大值,從而求解.

解答 解:(1)設(shè)長方形場地的寬為x,則長為12-3x,
它的面積y=x(12-3x)=-3x2+12x;
(2)由x>0,且12-3x>0,可得函數(shù)的定義域?yàn)椋?,4);
(3)y=-3(x-2)2+12.
∴當(dāng)寬x=2時(shí),這塊長方形場地的面積最大,
這時(shí)的長為12-3x=6,最大面積為12.

點(diǎn)評 此題是一道實(shí)際應(yīng)用題,考查函數(shù)的最值問題,解決此類問題要運(yùn)用配方法,這也是高考?嫉姆椒ǎ

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.直線x+2y-1=0的斜率是( 。
A.2B.$\frac{1}{2}$C.-$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知O為坐標(biāo)原點(diǎn),F(xiàn)是橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{16}$=1(a>0)的左焦點(diǎn),A,B分別為C的左右頂點(diǎn).P為C上一點(diǎn),且PF⊥x軸,過點(diǎn)A的直線l與線段PF交于點(diǎn)M,與y軸交于點(diǎn)E.若直線BM經(jīng)過OE的中點(diǎn),則a=( 。
A.3$\sqrt{2}$B.2$\sqrt{5}$C.2$\sqrt{6}$D.4$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.集合A={(x,y)|y=a},集合B={(x,y)|y=bx+1,b≠1},若集合A∩B=∅,則實(shí)數(shù)a的取值范圍是( 。
A.RB.(-∞,1)C.(1,+∞)D.(-∞,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.給出下列四個(gè)命題:
①垂直于同一平面的兩條直線相互平行;
②平行于同一平面的兩條直線相互平行;
③若一條直線平行于一個(gè)平面內(nèi)的無數(shù)條直線,那么這條直線平行于這個(gè)平面;
④若一條直線垂直于一個(gè)平面內(nèi)的任一條直線,那么這條直線垂直于這個(gè)平面
其中真命題的個(gè)數(shù)是( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若曲線y=1+logax(a>0且a≠1)在點(diǎn)(1,1)處的切線經(jīng)過坐標(biāo)原點(diǎn),則a=e.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.三個(gè)數(shù)0.76,60.7,log0.25的大小關(guān)系為(  )
A.0.76<l log0.25<60.7B.0.76<60.7<l log0.25
C.log0.25<60.7<0.76D.log0.25<0.76<60.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.化簡求值:
(1)(2$\frac{7}{9}$)0.5+0.1-20+$\frac{1}{3}$;
(2)(xy2•x${\;}^{\frac{1}{2}}$•y${\;}^{-\frac{1}{2}}$)${\;}^{\frac{1}{3}}$•(xy)${\;}^{\frac{1}{2}}$其中x>0,y>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知f(x)的定義在R上的偶函數(shù),且在區(qū)間(-∞,0]上為減函數(shù),則f(1)、f(-2)、f(3)的大小關(guān)系是( 。
A.f(1)>f(-2)>f(3)B.f(-2)>f(1)>f(3)C.f(1)>f(3)>f(-2)D.f(1)<f(-2)<f(3)

查看答案和解析>>

同步練習(xí)冊答案