13.直線x+2y-1=0的斜率是( 。
A.2B.$\frac{1}{2}$C.-$\frac{1}{2}$D.1

分析 直線x+2y-1=0化為斜截式y(tǒng)=-$\frac{1}{2}$x+$\frac{1}{2}$,即可得出斜率.

解答 解:直線x+2y-1=0化為y=-$\frac{1}{2}$x+$\frac{1}{2}$.
其斜率為-$\frac{1}{2}$.
故選C.

點(diǎn)評(píng) 本題考查了直線的斜截式與斜率,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.給出下列命題:
①若奇函數(shù)f(x)對(duì)定義域內(nèi)任意x都有f(x)=f(2-x),則函數(shù)f(x)為周期函數(shù);
②若函數(shù)f(x)=f'($\frac{π}{4}$)cosx+sinx,則f($\frac{π}{4}$)的值為1;
③函數(shù)f(x)=(x-3)ex的單調(diào)遞增區(qū)間為(2,+∞);
④函數(shù)f(x)=x2-2x在區(qū)間[0,4]上的零點(diǎn)個(gè)數(shù)為2,
其中真命題是①③④(將你認(rèn)為真命題的番號(hào)都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.函數(shù)f(x)=x2(2x-2-x)的大致圖象為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知向量$\overrightarrow{OA}$=(-1,3),$\overrightarrow{OB}$=(cosα,-sinα),且∠AOB=$\frac{π}{2}$.
求:$\frac{sin(π-2α)+{cos}^{2}α}{sin2α+cos2α+1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.如圖,BC是圓O的直徑,點(diǎn)F在弧$\widehat{BC}$上,點(diǎn)A為弧$\widehat{BF}$的中點(diǎn),作AD⊥BC于點(diǎn)D,BF與AD交于點(diǎn)E,BF與AC交于點(diǎn)G.
(1)證明:AE=BE;
(2)若AG=9,GC=7,求圓O的半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如圖,已知BC是⊙O的直徑,A是⊙O上一點(diǎn),過(guò)點(diǎn)A作⊙O的切線交BC的延長(zhǎng)線于點(diǎn)P,∠APB的平分線分別交AB,AC于點(diǎn)E,D.
(Ⅰ)證明:AE=AD;
(Ⅱ)若AC=CP,求$\frac{PC}{PA}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.設(shè)i是虛數(shù)單位,則復(fù)數(shù)$\frac{2i}{1-i}$在復(fù)平面內(nèi)所對(duì)應(yīng)的點(diǎn)P關(guān)于虛軸對(duì)稱的點(diǎn)的坐標(biāo)為(1,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)f(x)=$\sqrt{3}$sinωxsin(${\frac{π}{2}$+ωx)-cos2ωx-$\frac{1}{2}$(ω>0),其圖象兩相鄰對(duì)稱軸間的距離為$\frac{π}{2}$.
(I)求ω的值;
(II)討論函數(shù)f(x)在[0,π]上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.以圍墻為一邊,用籬笆圍成長(zhǎng)方形的場(chǎng)地(如圖),已知籬笆長(zhǎng)為定值12.
(1)寫(xiě)出場(chǎng)地面積y與邊長(zhǎng)x的函數(shù);
(2)指出函數(shù)的定義域;
(3)這塊地長(zhǎng)寬各為多少時(shí),場(chǎng)地的面積最大?最大值為多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案