分析 利用平面向量數(shù)量積的運算可求tanα的值,進而利用二倍角公式,同角三角函數(shù)基本關系式化簡所求即可計算得解.
解答 解:∵向量$\overrightarrow{OA}$=(-1,3),$\overrightarrow{OB}$=(cosα,-sinα),且∠AOB=$\frac{π}{2}$.
∴$\overrightarrow{OA}•\overrightarrow{OB}$=0,
∴-cosα-3sinα=0,可得:tan$α=-\frac{1}{3}$,
∴$\frac{sin(π-2α)+{cos}^{2}α}{sin2α+cos2α+1}$=$\frac{2sinαcosα+co{s}^{2}α}{2sinαcosα+2co{s}^{2}α}$=$\frac{2tanα+1}{2tanα+2}$=$\frac{1}{4}$.
點評 本題主要考查了平面向量數(shù)量積的運算,二倍角公式,同角三角函數(shù)基本關系式在三角函數(shù)化簡求值中的應用,考查了轉(zhuǎn)化思想,屬于基礎題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {x|1<x<3} | B. | {x|1≤x<3} | C. | {x|1<x≤3} | D. | {x|1≤x≤3} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | R | B. | (-∞,1) | C. | (1,+∞) | D. | (-∞,1] |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com