20.已知a>b,一元二次不等式ax2+2x+b≥0對(duì)于一切實(shí)數(shù)x恒成立,又?x0∈R,使ax02+2x0+b=0成立,則2a2+b2的最小值為( 。
A.1B.$\sqrt{2}$C.2D.2$\sqrt{2}$

分析 根據(jù)二次函數(shù)的性質(zhì)求出ab=1,根據(jù)基本不等式的性質(zhì)求出2a2+b2的最小值即可.

解答 解:∵已知a>b,二次不等式ax2+2x+b≥0對(duì)于一切實(shí)數(shù)x恒成立,
∴a>0,且△=4-4ab≤0,∴ab≥1.
再由?x0∈R,使ax02+2x0+b=0成立,可得△=0,∴ab=1,
∴2a2+b2≥2$\sqrt{{{2a}^{2}b}^{2}}$=2$\sqrt{2}$,
當(dāng)且僅當(dāng)2a2=b2即b=$\sqrt{2}$a時(shí)“=”成立,
故選:D.

點(diǎn)評(píng) 本題考查了二次函數(shù)的性質(zhì),考查不等式的性質(zhì),是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.若角θ滿足sinθ<0,tanθ<0,則角θ是( 。
A.第一象限角或第二象限角B.第二象限角或第四象限角
C.第三象限角D.第四象限角

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知$\overrightarrow a$=(cosα,sinα),$\overrightarrow b$=(cosβ,sinβ),(0<β<α<π).
(1)若$|{\overrightarrow a+\overrightarrow b}|=\sqrt{2}$,求證:$\overrightarrow a⊥\overrightarrow b$;
(2)設(shè)$\overrightarrow c=({0,1})$,若$\overrightarrow a+\overrightarrow b=\overrightarrow c$,求α,β的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.在邊長(zhǎng)為2的正三角形ABC中,設(shè)$\overrightarrow{BC}$=2$\overrightarrow{BD}$,$\overrightarrow{CA}$=3$\overrightarrow{CE}$,則$\overrightarrow{AD}$•$\overrightarrow{BE}$=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)f(x)=x2-(a+1)x+1(a∈R).
(1若關(guān)于x的不等式f(x)<0的解集是{x|m<x<2},求a,m的值;
(2)設(shè)關(guān)于x的不等式f(x)≤0的解集是A,集合B={x|0≤x≤1},若 A∩B=∅,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.命題“?x≠0,x2>0”的否定是( 。
A.?x≠0,x2≤0B.?x=0,x2≤0C.?x0≠0,${x_0}^2≤0$D.?x0=0,${x_0}^2≤0$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.函數(shù)y=ax3-1在(-∞,+∞)上是減函數(shù),則實(shí)數(shù)a的取值范圍為(-∞,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.拋物線y=$\frac{1}{8}$x2的準(zhǔn)線方程為( 。
A.$y=-\frac{1}{32}$B.y=-2C.x=-2D.x=-$\frac{1}{32}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知橢圓C:$\frac{y^2}{a^2}+\frac{x^2}{b^2}=1(a>b>0)$的上下兩個(gè)焦點(diǎn)分別為F1,F(xiàn)2,過(guò)點(diǎn)F1與y軸垂直的直線交橢圓C于M、N兩點(diǎn),△MNF2的面積為$\sqrt{3}$,橢圓C的離心率為$\frac{\sqrt{3}}{2}$
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)已知O為坐標(biāo)原點(diǎn),直線l:y=kx+m與y軸交于點(diǎn)P(P不與原點(diǎn)O重合),與橢圓C交于A,B兩個(gè)不同的點(diǎn),使得$\overrightarrow{AP}=3\overrightarrow{PB}$,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案