【題目】已知橢圓的左焦點為,離心率為.
(1)求橢圓的標準方程;
(2)設(shè)為坐標原點,為直線上一點,過作的垂線交橢圓于、.當(dāng)四邊形是平行四邊形時,求四邊形的面積.
【答案】(1);(2).
【解析】
(1)由焦點坐標和離心率及、、之間的關(guān)系求出、的值,進而可得橢圓的標準方程;
(2)由題意設(shè)的坐標為,由(1)得左焦點的坐標,可得直線的斜率,由題意可得的方程,將直線與橢圓的方程聯(lián)立求出兩根之和,運用韋達定理求得,再由四邊形是平行四邊形,可得,由此求出的值,從而可得的長,進而求出四邊形的面積.
(1)由已知得:,,所以,又,解得,
所以橢圓的標準方程為:;
(2)設(shè)點的坐標為,則直線的斜率,
當(dāng)時,直線的斜率,直線的方程是;
當(dāng)時,直線的方程也符合的形式.
由,得(*),其判別式,
設(shè)、,則,,
因為四邊形是平行四邊形,所以,即,
所以,解得,
此時,方程(*)為,得,則.
此時的面積.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列的前項和為,若存在正整數(shù),且,使得,同時成立,則稱數(shù)列為“數(shù)列”.
(1)若首項為,公差為的等差數(shù)列是“數(shù)列”,求的值;
(2)已知數(shù)列為等比數(shù)列,公比為.
①若數(shù)列為“數(shù)列”,,求的值;
②若數(shù)列為“數(shù)列”,,求證:為奇數(shù),為偶數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在棱長為2的正方體中,點M是對角線上的點(點M與A、不重合),則下列結(jié)論正確的個數(shù)為( )
①存在點M,使得平面平面;
②存在點M,使得平面;
③若的面積為S,則;
④若、分別是在平面與平面的正投影的面積,則存在點M,使得.
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題:函數(shù)在上單調(diào)遞增;命題:函數(shù)在上單調(diào)遞減.
(Ⅰ)若是真命題,求實數(shù)的取值范圍;
(Ⅱ)若或為真命題,且為假命題,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,梯形中,,過分別作,,垂足分別,,已知,將梯形沿同側(cè)折起,得空間幾何體 ,如圖.
1若,證明:平面;
2若,,線段上存在一點,滿足與平面所成角的正弦值為,求的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形是矩形,沿對角線將折起,使得點在平面內(nèi)的射影恰好落在邊上.
(Ⅰ)求證:平面平面;
(Ⅱ)當(dāng)時,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐C﹣ABNM中,四邊形ABNM的邊長均為2,△ABC為正三角形,MB,MB⊥NC,E,F分別為MN,AC中點.
(Ⅰ)證明:MB⊥AC;
(Ⅱ)求直線EF與平面MBC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(k為常數(shù),且).
(1)在下列條件中選擇一個________使數(shù)列是等比數(shù)列,說明理由;
①數(shù)列是首項為2,公比為2的等比數(shù)列;
②數(shù)列是首項為4,公差為2的等差數(shù)列;
③數(shù)列是首項為2,公差為2的等差數(shù)列的前n項和構(gòu)成的數(shù)列.
(2)在(1)的條件下,當(dāng)時,設(shè),求數(shù)列的前n項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】埃及金字塔是古埃及的帝王(法老)陵墓,世界七大奇跡之一,其中較為著名的是胡夫金字塔.令人吃驚的并不僅僅是胡夫金字塔的雄壯身姿,還有發(fā)生在胡夫金字塔上的數(shù)字“巧合”.如胡夫金字塔的底部周長如果除以其高度的兩倍,得到的商為3.14159,這就是圓周率較為精確的近似值.金字塔底部形為正方形,整個塔形為正四棱錐,經(jīng)古代能工巧匠建設(shè)完成后,底座邊長大約230米.因年久風(fēng)化,頂端剝落10米,則胡夫金字塔現(xiàn)高大約為( )
A.128.5米B.132.5米C.136.5米D.110.5米
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com