1.雙曲線$\frac{{y}^{2}}{3}$-x2=1的兩條漸近線的夾角為60°.

分析 由雙曲線方程,求得其漸近線方程,求得直線的夾角,即可求得兩條漸近線夾角.

解答 解:雙曲線$\frac{{y}^{2}}{3}$-x2=1的兩條漸近線的方程為:y=±$\sqrt{3}$x,
所對(duì)應(yīng)的直線的傾斜角分別為60°,120°,
∴雙曲線雙曲線$\frac{{y}^{2}}{3}$-x2=1的兩條漸近線的夾角為60°,
故答案為:60°.

點(diǎn)評(píng) 本題考查雙曲線的幾何性質(zhì),考查直線的傾斜角的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.m,n是兩條不同的直線,α,β是兩個(gè)不同的平面,下列命題是真命題的是( 。
A.若m∥α,m∥β,則 α∥βB.若m∥α,α∥β,則 m∥β
C.若m?α,m⊥β,則 α⊥βD.若m?α,α⊥β,則 m⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.y=lg|x-1|的圖象為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,在三棱錐P-ABC中,△PAB和△PAC均為邊長(zhǎng)是$\sqrt{2}$的正三角形,且∠BAC=90°,O為BC的中點(diǎn).
(Ⅰ)證明:PO⊥平面ABC;
(Ⅱ)求直線PB與平面PAC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.“m<0”是“$\frac{{x}^{2}}{m}$-$\frac{{y}^{2}}{m-1}$=1表示的曲線是雙曲線”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.用秦九韶算法求多項(xiàng)式f(x)=x6-5x5+6x4+x2+0.3x+2,當(dāng)x=-2時(shí),v1的值為( 。
A.1B.7C.-7D.-5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.甲、乙兩位同學(xué)參加數(shù)學(xué)競(jìng)賽培訓(xùn),在培訓(xùn)期間他們參加5次預(yù)賽,成績(jī)?nèi)缦拢?br />甲:78 76 74 90 82
乙:90 70 75 85 80
(Ⅰ)用莖葉圖表示這兩組數(shù)據(jù);
(Ⅱ)現(xiàn)要從中選派一人參加數(shù)學(xué)競(jìng)賽,你認(rèn)為選派哪位學(xué)生參加合適?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.某人從甲地去乙地共走了500m,途經(jīng)一條寬為x m的河流,該人不小心把一件物品丟在途中,若物品掉在河里就找不到,若物品不掉在河里就能找到.已知該物品能被找到的概率為$\frac{24}{25}$,則河寬為( 。
A.80 mB.20 mC.40 mD.50 m

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.甲、乙兩位射擊運(yùn)動(dòng)員,在某天訓(xùn)練中已各射擊10次,每次命中的環(huán)數(shù)如下:
甲    7  8  7  9  5  4  9  10  7  4
乙    9  5  7  8  7  6  8  6   7  7
(Ⅰ)通過計(jì)算估計(jì),甲、乙二人的射擊成績(jī)誰更穩(wěn);
(Ⅱ)若規(guī)定命中8環(huán)及以上環(huán)數(shù)為優(yōu)秀,以頻率作為概率,請(qǐng)依據(jù)上述數(shù)據(jù)估計(jì),求甲在第11至
第13次射擊中獲得獲得優(yōu)秀的次數(shù)ξ的分布列和期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案