【題目】已知橢圓與y軸的正半軸相交于點M,且橢圓E上相異兩點A、B滿足直線MA,MB的斜率之積為.
(Ⅰ)證明直線AB恒過定點,并求定點的坐標;
(Ⅱ)求三角形ABM的面積的最大值.
【答案】(1)直線恒過定點.(2)
【解析】試題分析:利用設(shè)而不求思想設(shè)出點的坐標,首先考慮 直線斜率不存在的情況,然后研究直線斜率存在的一般情況,設(shè)出直線斜截式方程與橢圓方程聯(lián)立方程組,代入整理后寫出根與系數(shù)關(guān)系,根據(jù)MA、MB的斜率之積為,代入,解出,得出直線過定點,第二步聯(lián)立方程組后利用判別式大于零,求出k的范圍,表示三角形的面積,利用基本不等式求出最值 .
試題解析:
解:(Ⅰ)由橢圓的方程得,上頂點,記 由題意知, ,若直線的斜率不存在,則直線的方程為,故,且,因此,與已知不符,因此直線的斜率存在,設(shè)直線: ,代入橢圓的方程得: ………①
因為直線與曲線有公共點,所以方程①有兩個非零不等實根,
所以,
又, ,
由 ,得
即
所以
化簡得: ,故或,
結(jié)合知,
即直線恒過定點.
(Ⅱ)由且得: 或,
又
,當且僅當,即 時, 的面積最大,最大值為 .
科目:高中數(shù)學 來源: 題型:
【題目】一條光線從點(﹣2,﹣3)射出,經(jīng)y軸反射后與圓(x+3)2+(y﹣2)2=1相切,則反射光線所在直線的斜率為( )
A.﹣或﹣
B.﹣或﹣
C.﹣或﹣
D.﹣或﹣
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某手機賣場對市民進行國產(chǎn)手機認可度的調(diào)查,隨機抽取100名市民,按年齡(單位:歲)進行統(tǒng)計的頻數(shù)分布表和頻率分布直方圖如圖:
(Ⅰ)求頻率分布表中,的值,并補全頻率分布直方圖;
(Ⅱ)在抽取的這100名市民中,按年齡進行分層抽樣,抽取20人參加國產(chǎn)手機用戶體驗問卷調(diào)查,現(xiàn)從這20人中隨機選取2人各贈送精美禮品一份,設(shè)這2名市民中年齡在內(nèi)的人數(shù),求的分布列及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
以直角坐標系的原點為極點, 軸的非負半軸為極軸建立極坐標系,且兩坐標系有相同的長度單位.已知點的極坐標為, 是曲線: 上任意一點,點滿足,設(shè)點的軌跡為曲線.
(Ⅰ)求曲線的直角坐標方程;
(Ⅱ)若過點的直線的參數(shù)方程(為參數(shù)),且直線與曲線交于, 兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
已知直線(為參數(shù)),曲線(為參數(shù)).
(1)設(shè)與相交于兩點,求;
(2)若把曲線上各點的橫坐標壓縮為原來的倍,縱坐標壓縮為原來的倍,得到曲線,設(shè)點是曲線上的一個動點,求它到直線的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
已知直線的極坐標方程為),圓的參數(shù)方程為: (其中為參數(shù)).
(1)判斷直線與圓的位置關(guān)系;
(2)若橢圓的參數(shù)方程為(為參數(shù)),過圓的圓心且與直線垂直的直線與橢圓相交于兩點,求.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校從高二年級學生中隨機抽取60名學生,將其期中考試的政治成績(均為整數(shù))分成六段: , , ,…后得到如下頻率分布直方圖.
(1)根據(jù)頻率分布直方圖,估計該校高二年級學生期中考試政治成績的中位數(shù)(精確到0.1)、眾數(shù)、平均數(shù);
(2)用分層抽樣的方法抽取一個容量為20的樣本,求各分數(shù)段抽取的人數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在幾何體ABDCE中,AB=AD,AE⊥平面ABD,M為線段BD的中點,MC∥AE,AE=MC.
(1)求證:平面BCD⊥平面CDE;
(2)若N為線段DE的中點,求證:平面AMN∥平面BEC.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示的是一個幾何體的直觀圖和三視圖(其中正視圖為直角梯形,俯視圖為正方形,側(cè)視圖為直角三角形).
(1)求四棱錐P-ABCD的體積;
(2)若G為BC上的動點,求證:AE⊥PG.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com