【題目】已知函數(shù).

(1)當(dāng)時,求函數(shù)的值域;

(2)如果對任意的,不等式恒成立,求實數(shù)的取值范圍.

【答案】(1);(2) .

【解析】

1)利用配方法化簡函數(shù),根據(jù)函數(shù)的定義域,換元得到t∈[0,2],由二次函數(shù)的性質(zhì),即可求出函數(shù)的值域;(2)先利用對數(shù)運算化簡不等式,換元,再通過分離參數(shù)法,轉(zhuǎn)化為最值問題,利用基本不等式求出最值,即可求出實數(shù)的取值范圍.

(1)h(x)=(42=-2(1)22,

因為x∈[1,4],所以t∈[0,2],,

故函數(shù)h(x)的值域為[0,2].

(2)由f(x2f()>k·g(x),

得(34)(3)>k·,

,因為x∈[1,4],所以t∈[0,2],

所以(34t)(3t)>k·t對一切t∈[0,2]恒成立,

①當(dāng)t0時,kR;

②當(dāng)t∈(0,2]時,恒成立,

因為,當(dāng)且僅當(dāng),即時取等號,

所以的最小值為-3.所以k<-3.

綜上,實數(shù)k的取值范圍為(-∞,-3).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

1)當(dāng)a=2時,求函數(shù)g(x)的零點;

2)若函數(shù)g(x)有四個零點,求a的取值范圍;

3)在(2)的條件下,記g(x)的四個零點分別為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某蔬菜基地種植西紅柿,由歷年市場行情得知,從二月一日起的300天內(nèi),西紅柿市場銷售價與上市時間的關(guān)系用圖(1)的一條折線表示;西紅柿的種植成本與上市時間的關(guān)系用圖(2)的拋物線段表示.

(1)寫出圖(1)表示的市場售價與時間的函數(shù)關(guān)系式寫出圖(2)表示的種植成本與時間的函數(shù)關(guān)系式

(2)認(rèn)定市場售價減去種植成本為純收益,問何時上市的西紅柿收益最大?(注:市場售價和種植成本的單位:元/kg,時間單位:天.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知指數(shù)函數(shù)滿足又定義域為實數(shù)集R的函數(shù) 是奇函數(shù)

確定的解析式;

的值;

若對任意的R,不等式恒成立,求實數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是函數(shù)的零點,.

(1)求實數(shù)的值;

(2)若不等式上恒成立,求實數(shù)的取值范圍;

(3)若方程有三個不同的實數(shù)解,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一次體能測試中,某研究院對該地區(qū)甲、乙兩學(xué)校做抽樣調(diào)查,所得學(xué)生的測試成績?nèi)缦卤硭荆?/span>

1將甲、乙兩學(xué)校學(xué)生的成績整理在所給的莖葉圖中,并分別計算其平均數(shù);

2若在乙學(xué)校被抽取的10名學(xué)生中任選3人檢測肺活量,求被抽到的3人中,至少2人成績超過80分的概率;

3以甲學(xué)校的體能測試情況估計該地區(qū)所有學(xué)生的體能情況,則若從該地區(qū)隨機抽取4名學(xué)生,記測試成績在80分以上(含80分)的人數(shù)為,的分布列及期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線的左,右焦點分別為,若雙曲線上存在點,使,則該雙曲線的離心率范圍為( )

A. (1,1 B. (1,1 C. (1,1] D. (1,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于函數(shù),若,則稱的“不動點”;若,則稱的“穩(wěn)定點”.函數(shù)的“不動點”和“穩(wěn)定點”的集合分別記為,即,

)設(shè)函數(shù),求集合

)求證:

)設(shè)函數(shù),且,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列{an}的各項均為正數(shù),其公差為2,a2a4=4a3+1.

(1)求{an}的通項公式;

(2)求.

查看答案和解析>>

同步練習(xí)冊答案