如圖,正方形ABCD和三角形ACE所在的平面互相垂直,EF∥BD,AB=EF.
(1)求證:BF∥平面ACE;
(2)求證:BF⊥BD.
(1)詳見解析, (2) 詳見解析.
解析試題分析:(1) 證明線面平行,需先證線線平行. 正方形ABCD中,BO=AB,又因?yàn)锳B=EF,∴BO=EF,又因?yàn)镋F∥BD,∴EFBO是平行四邊形,∴BF∥EO,又∵BF?平面ACE,EO?平面ACE,∴BF∥平面ACE.列線面平行判定定理的條件必須要全面. (2)證明線線垂直,一般利用線面垂直進(jìn)行轉(zhuǎn)化.條件為面面垂直,所以先由面面垂直性質(zhì)定理轉(zhuǎn)化為線面垂直:正方形ABCD中,AC⊥BD,又因?yàn)檎叫蜛BCD和三角形ACE所在的平面互相垂直,BD?平面ABCD,平面ABCD∩平面ACE=AC,∴BD⊥平面ACE,∵EO?平面ACE,∴BD⊥EO,∵EO∥BF,∴BF⊥BD.
證明 (1)AC與BD交于O點(diǎn),連接EO.
正方形ABCD中,BO=AB,又因?yàn)锳B=EF,
∴BO=EF,又因?yàn)镋F∥BD,
∴EFBO是平行四邊形,
∴BF∥EO,又∵BF?平面ACE,EO?平面ACE,
∴BF∥平面ACE 7分
(2)正方形ABCD中,AC⊥BD,又因?yàn)檎叫蜛BCD和三角形ACE所在的平面互相垂直,BD?平面ABCD,平面ABCD∩平面ACE=AC,
∴BD⊥平面ACE,∵EO?平面ACE,
∴BD⊥EO,∵EO∥BF,∴BF⊥BD. 14分
考點(diǎn):線面平行判定定理,面面垂直性質(zhì)定理,
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在長方體中,.
(1)若點(diǎn)在對角線上移動,求證:⊥;
(2)當(dāng)為棱中點(diǎn)時,求點(diǎn)到平面的距離。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐A—BCC1B1中,等邊三角形ABC所在平面與正方形BCC1B1所在平面互相垂直,D為CC1的中點(diǎn).
(1)求證:BD⊥AB1;
(2)求二面角B—AD—B1的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在梯形ABCD中,AB//CD,AD=DC=CB=a,,四邊形ACFE是矩形,且平面平面ABCD,點(diǎn)M在線段EF上.
(1)求證:平面ACFE;
(2)當(dāng)EM為何值時,AM//平面BDF?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
如圖,在三棱柱中,底面,,E、F分別是棱的中點(diǎn).
(1)求證:AB⊥平面AA1 C1C;
(2)若線段上的點(diǎn)滿足平面//平面,試確定點(diǎn)的位置,并說明理由;
(3)證明:⊥A1C.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知直四棱柱的底面為正方形,,為棱的中點(diǎn).
(1)求證:;
(2)設(shè)為中點(diǎn),為棱上一點(diǎn),且,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖①,已知ABC是邊長為l的等邊三角形,D,E分別是AB,AC邊上的點(diǎn),AD=AE,F(xiàn)是BC的中點(diǎn),AF與DE交于點(diǎn)G,將ABF沿AF折起,得到如圖②所示的三棱錐A-BCF,其中BC=.
(1)證明:DE//平面BCF;
(2)證明:CF平面ABF;
(3)當(dāng)AD=時,求三棱錐F-DEG的體積
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐P-ABCD中,ABCD為平行四邊形,平面PAB,,.M為PB的中點(diǎn).
(1)求證:PD//平面AMC;
(2)求銳二面角B-AC-M的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com