【題目】某校共有學(xué)生2000人,其中男生1100人,女生900人為了調(diào)查該校學(xué)生每周平均課外閱讀時間,采用分層抽樣的方法收集該校100名學(xué)生每周平均課外閱讀時間(單位:小時)
(1)應(yīng)抽查男生與女生各多少人?
(2)如圖,根據(jù)收集100人的樣本數(shù)據(jù),得到學(xué)生每周平均課外閱讀時間的頻率分布直方圖,其中樣本數(shù)據(jù)分組區(qū)間為.若在樣本數(shù)據(jù)中有38名女學(xué)生平均每周課外閱讀時間超過2小時,請完成每周平均課外閱讀時間與性別的列聯(lián)表,并判斷是否有95%的把握認(rèn)為“該校學(xué)生的每周平均課外閱讀時間與性別有關(guān)”.
男生 | 女生 | 總計 | |
每周平均課外閱讀時間不超過2小時 | |||
每周平均課外閱讀時間超過2小時 | |||
總計 |
附:
0.100 | 0.050 | 0.010 | 0.005 | |
2.706 | 3.841 | 6.635 | 7.879 |
【答案】(1)男生人數(shù)人,女生人數(shù):人(2)填表詳見解析,有95%的把握認(rèn)為“該校學(xué)生的每周平均閱讀時間與性別有關(guān).”
【解析】
(1)由男女生比例以及分層抽樣特征,即可求解;(2)由頻率分布直方圖可得到學(xué)生平均每周課外閱讀時間超過2小時
(1)男生人數(shù):女生人數(shù)=1100:900=11:9
所以,男生人數(shù)人
女生人數(shù):人.
(2)由頻率分布直方圖可得到學(xué)生平均每周課外閱讀時間超過2小時的人數(shù)為:
人,
所以,平均每周課外閱讀時間超過2小時的男生人數(shù)為37人.
可得每周課外閱讀時間與性別的列聯(lián)表為
男生 | 女生 | 總計 | |
每周平均閱讀時間不超過2小時 | 18 | 7 | 25 |
每周平均閱讀時間超過2小時 | 37 | 38 | 75 |
總計 | 55 | 45 | 100 |
所以,有95%的把握認(rèn)為“該校學(xué)生的每周平均閱讀時間與性別有關(guān).”
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)在中,角A,B,C所對的邊分別是a,b,c,證明余弦定理:;
(2)長江某地南北岸平行,如圖所示,江面寬度,一艘游船從南岸碼頭A出發(fā)航行到北岸,假設(shè)游船在靜水中的航行速度,水流速度,設(shè)和的夾角為θ(),北岸的點(diǎn)在點(diǎn)A的正北方向.
①當(dāng)多大時,游船能到達(dá)處,需要航行多少時間?
②當(dāng)時,判斷游船航行到達(dá)北岸的位置在的左側(cè)還是右側(cè),并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知以C為圓心的圓及其上一點(diǎn).
(1)設(shè)平行于的直線與圓C相交于兩點(diǎn),且,求直線的方程;
(2)設(shè)點(diǎn)滿足:存在圓C上的兩點(diǎn)使得,求實數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】雙曲線的一個焦點(diǎn)恰好與拋物線的焦點(diǎn)重合,且兩曲線的一個交點(diǎn)為,若,則雙曲線的方程為( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)O是銳角△ABC的外心,a,b,c分別為內(nèi)角A、B、C的對邊,A= ,且,則λ的值為( 。
A. B. ﹣ C. D. ﹣
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有甲、乙、丙三個盒子,其中每個盒子中都裝有標(biāo)號分別為1、2、3、4、5、6的六張卡片,現(xiàn)從甲、乙、丙三個盒子中依次各取一張卡片使得卡片上的標(biāo)號恰好成等差數(shù)列的取法數(shù)為( )
A.14B.16C.18D.20
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),的定義域分別為,若存在常數(shù),滿足:①對任意,恒有,且.②對任意,關(guān)于的不等式組恒有解,則稱為的一個“型函數(shù)”.
(1)設(shè)函數(shù)和,求證:為的一個“型函數(shù)”;
(2)設(shè)常數(shù),函數(shù),.若為的一個“型函數(shù)”,求的取值范圍;
(3)設(shè)函數(shù).問:是否存在常數(shù),使得函數(shù)為的一個“型函數(shù)”?若存在,求的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn),直線,設(shè)圓的半徑為1, 圓心在上.
(1)若圓心也在直線上,過點(diǎn)作圓的切線,求切線方程;
(2)若圓上存在點(diǎn),使,求圓心的橫坐標(biāo)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com