【題目】已知集合.
(1)判斷是否屬于;
(2)判斷是否屬于;
(3)若,求實(shí)數(shù)的取值范圍.
【答案】(1)f(x)M; (2)f(x)M;(3).
【解析】
(1)f(x),令f(x+1)=f(x)f(1),該方程無(wú)實(shí)數(shù)解,從而知函數(shù)f(x)不屬于集合M;
(2)令f(x+1)=f(x)f(1),依題意可求得2x+2 x 2-2 x -1=0,構(gòu)造函數(shù)g(x)=2x+2 x 2-2 x -1=0,利用零點(diǎn)存在定理即可證得結(jié)論;
(3)依題意可求得,設(shè)2x=t>0,2 t 2+(4 a +2)t+ a 2=0有正根,從而可求得a的取值范圍.
(1)由題意,f(x)f(1)=,f(x+1)=
∵無(wú)解, ∴ f(x)M ;
(2)∵f(x)f(1)=(2x+x2)(21+12)=3(2 x +x2),f(x +1)=2 x +1+( x +1)2
令3(2 x +x2)= 2 x +1+( x +1)2
即2x+2 x 2-2 x -1=0……(*),
令g(x)= 2x+2x2-2x-1
∵
∴存在,滿足
∴f(x)M .
(3)∵
所以方程有解
即
整理得,222x+(4a+2)2x + a 2=0
令t =2 x (t>0)
∴2 t 2+(4 a +2)t+ a 2=0有正根,
令h(t)= 2t 2+(4 a +2)t + a 2
∵h(yuǎn)(0)≥ 0,
∴
解得
所以的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的定義域是使得解析式有意義的x集合,如果對(duì)于定義域內(nèi)的任意實(shí)數(shù)x,函數(shù)值均為正,則稱(chēng)此函數(shù)為“正函數(shù)”.
(1)證明函數(shù)是“正函數(shù)”;
(2)如果函數(shù)不是“正函數(shù)”,求正數(shù)a的取值范圍.
(3)如果函數(shù)是“正函數(shù)”,求正數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校共有學(xué)生2000人,其中男生1100人,女生900人為了調(diào)查該校學(xué)生每周平均課外閱讀時(shí)間,采用分層抽樣的方法收集該校100名學(xué)生每周平均課外閱讀時(shí)間(單位:小時(shí))
(1)應(yīng)抽查男生與女生各多少人?
(2)如圖,根據(jù)收集100人的樣本數(shù)據(jù),得到學(xué)生每周平均課外閱讀時(shí)間的頻率分布直方圖,其中樣本數(shù)據(jù)分組區(qū)間為.若在樣本數(shù)據(jù)中有38名女學(xué)生平均每周課外閱讀時(shí)間超過(guò)2小時(shí),請(qǐng)完成每周平均課外閱讀時(shí)間與性別的列聯(lián)表,并判斷是否有95%的把握認(rèn)為“該校學(xué)生的每周平均課外閱讀時(shí)間與性別有關(guān)”.
男生 | 女生 | 總計(jì) | |
每周平均課外閱讀時(shí)間不超過(guò)2小時(shí) | |||
每周平均課外閱讀時(shí)間超過(guò)2小時(shí) | |||
總計(jì) |
附:
0.100 | 0.050 | 0.010 | 0.005 | |
2.706 | 3.841 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題中正確的命題是( )
A.標(biāo)準(zhǔn)差越小,則反映樣本數(shù)據(jù)的離散程度越大
B.在回歸直線方程中,當(dāng)解釋變量每增加1個(gè)單位時(shí),則預(yù)報(bào)變量減少0.4個(gè)單位
C.對(duì)分類(lèi)變量與來(lái)說(shuō),它們的隨機(jī)變量的觀測(cè)值越小,“與有關(guān)系”的把握程度越大
D.在回歸分析模型中,殘差平方和越小,說(shuō)明模型的擬合效果越好
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)().
(1)若不等式的解集為,求的取值范圍;
(2)當(dāng)時(shí),解不等式;
(3)若不等式的解集為,若,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=1-(a>0且a≠1)是定義在(-∞,+∞)上的奇函數(shù).
(1)求a的值;
(2)證明:函數(shù)f(x)在定義域(-∞,+∞)內(nèi)是增函數(shù);
(3)當(dāng)x∈(0,1]時(shí),tf(x)≥2x-2恒成立,求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐中,底面是邊長(zhǎng)為的正三角形,,且,分別是,中點(diǎn),則異面直線與所成角的余弦值為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直四棱柱中,已知,.
(1)求證:;
(2)設(shè)是上一點(diǎn),試確定的位置,使平面,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是橢圓的左、右焦點(diǎn),點(diǎn)在橢圓上,線段與軸的交點(diǎn)滿足.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過(guò)點(diǎn)作不與軸重合的直線,設(shè)與圓相交于兩點(diǎn),與橢圓相交于兩點(diǎn),當(dāng)且時(shí),求的面積的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com