【題目】如圖,AB為圓柱的軸,CD為底面直徑,E為底面圓周上一點,AB=1,CD=2,CE=DE.
求(1)三棱錐A﹣CDE的全面積;
(2)點D到平面ACE的距離.
【答案】解:(1)∵AB為圓柱的軸,CD為底面直徑,E為底面圓周上一點,AB=1,CD=2,CE=DE,
∴AD==,∠CED=90°,
∴DE=CE==AC=AD=AE,
∴三棱錐A﹣CDE的全面積:
S=S△CDE+S△ACD+S△ACE+S△ADE
=(X+2×1+XXsin600+XXsin600)
=2+.
(2)設點D到平面ACE的距離為h,
由VA﹣CDE=VD﹣ACE , 得,
∴h===.
【解析】(1)先求出AD= , ∠CED=90°,DE=CE==AC=AD=AE,由此能求出三棱錐A﹣CDE的全面積.
(2)設點D到平面ACE的距離為h,由VA﹣CDE=VD﹣ACE , 能求出點D到平面ACE的距離.
科目:高中數(shù)學 來源: 題型:
【題目】下列函數(shù)f(x)與g(x)相等的一組是( 。
A.f(x)=x﹣1,g(x)=﹣1
B.f(x)=x2 , g(x)=()4
C.f(x)=log2x2 , g(x)=2log2x
D.f(x)=tanx,g(x)=
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分13分)已知函數(shù)(為常數(shù),)
(1)若是函數(shù)的一個極值點,求的值;
(2)求證:當時,在上是增函數(shù);
(3)若對任意的,總存在,使不等式成立,求正實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)在處的切線方程為
(Ⅰ)求函數(shù)的單調區(qū)間;
(Ⅱ)若為整數(shù),當時, 恒成立,求的最大值(其中為的導函數(shù)).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)=|x+1|+|x-1|,不等式f(x)<4的解集為M.
(1)求M.
(2)當a,b∈M時,證明:2|a+b|<|4+ab|.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)().
(Ⅰ)若函數(shù)在處的切線平行于直線,求實數(shù)的值;
(Ⅱ)討論在上的單調性;
(Ⅲ)若存在,使得成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知公差大于零的等差數(shù)列的前項和為,且,.
(1)求數(shù)列的通項公式;
(2)若數(shù)列是等差數(shù)列,且,求非零常數(shù)的值.
(3)設,為數(shù)列的前項和,是否存在正整數(shù),使得對任意的均成立?若存在,求出的最小值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知下圖中,四邊形 ABCD是等腰梯形, , ,O、Q分別為線段AB、CD的中點,OQ與EF的交點為P,OP=1,PQ=2,現(xiàn)將梯形ABCD沿EF折起,使得,連結AD、BC,得一幾何體如圖所示.
(Ⅰ)證明:平面ABCD平面ABFE;
(Ⅱ)若上圖中, ,CD=2,求平面ADE與平面BCF所成銳二面角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com