【題目】已知公差大于零的等差數(shù)列的前項和為,且

(1)求數(shù)列的通項公式;

(2)若數(shù)列是等差數(shù)列,且,求非零常數(shù)的值.

(3)設(shè),為數(shù)列的前項和,是否存在正整數(shù)使得任意的成立?若存在,求出的最小值;若不存在,請說明理由.

【答案】見解析

【解析】1因為數(shù)列為等差數(shù)列,,所以,

,所以,方程的兩個根,(2分)

解得,

設(shè)等差數(shù)列的公差為,由題意可得所以,

所以,,所以,解得,(3分)

所以,數(shù)列的通項公式4分)

2)由(1)知,,所以,

所以,,(5分)

因為數(shù)列是等差數(shù)列,所以,,

,解得舍去)7分)

當(dāng)時,,易知數(shù)列是等差數(shù)列,滿足題意

非零常數(shù)的值為8分)

3由題可得,(10分)

利用裂項相消可得,(11分)

所以存在正整數(shù)使得任意的成立,

所以的最小值為12分)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知直線為參數(shù)),曲線為參數(shù)).

(1)設(shè)相交于兩點,求;

(2)若把曲線上各點的橫坐標(biāo)壓縮為原來的倍,縱坐標(biāo)壓縮為原來的倍,得到曲線,設(shè)點是曲線上的一個動點,求它到直線的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為圓柱的軸,CD為底面直徑,E為底面圓周上一點,AB=1,CD=2,CE=DE.
求(1)三棱錐A﹣CDE的全面積;
(2)點D到平面ACE的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知的頂點, 邊上的中線所在直線方程為, 邊上的高所在直線方程為. 

(1)求點的坐標(biāo);

(2)求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為迎接2017年“雙”,“雙”購物狂歡節(jié)的來臨,某青花瓷生產(chǎn)廠家計劃每天生產(chǎn)湯碗、花瓶、茶杯這三種瓷器共個,生產(chǎn)一個湯碗需分鐘,生產(chǎn)一個花瓶需分鐘,生產(chǎn)一個茶杯需分鐘,已知總生產(chǎn)時間不超過小時.若生產(chǎn)一個湯碗可獲利潤元,生產(chǎn)一個花瓶可獲利潤元,生產(chǎn)一個茶杯可獲利潤元.

(1)使用每天生產(chǎn)的湯碗個數(shù)與花瓶個數(shù)表示每天的利潤(元);

(2)怎樣分配生產(chǎn)任務(wù)才能使每天的利潤最大,最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的是一個幾何體的直觀圖和三視圖(其中正視圖為直角梯形,俯視圖為正方形,側(cè)視圖為直角三角形).

(1)求四棱錐P-ABCD的體積;

(2)若G為BC上的動點,求證:AEPG.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】據(jù)氣象中心觀察和預(yù)測:發(fā)生于M地的沙塵暴一直向正南方向移動,其移動速度v(km/h)與時間t(h)的函數(shù)圖象如圖所示,過線段OC上一點T(t,0)作橫軸的垂線l,梯形OABC在直線l左側(cè)部分的面積即為t(h)內(nèi)沙塵暴所經(jīng)過的路程s(km).
(1)當(dāng)t=4時,求s的值;
(2)將s隨t變化的規(guī)律用數(shù)學(xué)關(guān)系式表示出來;
(3)若N城位于M地正南方向,且距M地650km,試判斷這場沙塵暴是否會侵襲到N城,如果會,在沙塵暴發(fā)生后多長時間它將侵襲到N城?如果不會,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知過拋物線焦點且傾斜角的直線與拋物線交于點 的面積為

(I)求拋物線的方程;

(II)設(shè)是直線上的一個動點,過作拋物線的切線,切點分別為直線與直線軸的交點分別為是以為圓心為半徑的圓上任意兩點,求最大時點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的右焦點為,左頂點為

1)求橢圓的方程;

2)過點作兩條相互垂直的直線分別與橢圓交于(不同于點的)兩點.試判斷直線軸的交點是否為定點,若是,求出定點坐標(biāo);若不是,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案