10.已知平面向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=$\overrightarrow$=2,($\overrightarrow{a}$+2$\overrightarrow$)•($\overrightarrow{a}$-$\overrightarrow$)=-6,則$\overrightarrow{a}$與$\overrightarrow$的夾角為( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

分析 根據(jù)條件進(jìn)行向量數(shù)量積的運(yùn)算即可得出$(\overrightarrow{a}+2\overrightarrow)•(\overrightarrow{a}-\overrightarrow)=4+4cos<\overrightarrow{a},\overrightarrow>-8=-6$,從而可求出$cos<\overrightarrow{a},\overrightarrow>$的值,進(jìn)而便可得出向量$\overrightarrow{a},\overrightarrow$的夾角.

解答 解:$|\overrightarrow{a}|=|\overrightarrow|=2$;
∴$(\overrightarrow{a}+2\overrightarrow)•(\overrightarrow{a}-\overrightarrow)$=${\overrightarrow{a}}^{2}+\overrightarrow{a}•\overrightarrow-2{\overrightarrow}^{2}$
=$4+4cos<\overrightarrow{a},\overrightarrow>-8$
=-6;
∴$cos<\overrightarrow{a},\overrightarrow>=-\frac{1}{2}$;
∵$<\overrightarrow{a},\overrightarrow>∈[0,π]$;
∴$<\overrightarrow{a},\overrightarrow>=\frac{2π}{3}$.
故選:C.

點(diǎn)評(píng) 考查向量數(shù)量積的運(yùn)算及計(jì)算公式,向量夾角的范圍,以及已知三角函數(shù)值求角.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知函數(shù)y=g(x)的圖象與函數(shù)f(x)=2x+3的圖象關(guān)于直線y=x對(duì)稱,若mn=16(m,n∈R+),則g(m)+g(n)的值為-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.函數(shù)f(x)=x3-3x2-9x+12在x=3處取得極小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知等比數(shù)列{an}滿足,a1=1,2a3=a2
(1)求數(shù)列{an}的通項(xiàng)公式
(2)若等差數(shù)列{bn}的前n項(xiàng)和為Sn,滿足b1=2,S3=b2+6,求數(shù)列{bn}的通項(xiàng)公式
(3)在(2)的條件下,求數(shù)列{an•bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.函數(shù)y=cos2x-sinx,x∈[-$\frac{π}{4}$,$\frac{π}{2}$]的值域是[-1,$\frac{5}{4}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.函數(shù)f(x)=$\frac{lg(x+2)}{\sqrt{1-x}}$的定義域?yàn)椋?2,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.若方程$\frac{1}{3}{x^3}$-4x+4=k有3個(gè)解,求實(shí)數(shù)k的取值范圍(-$\frac{4}{3}$,$\frac{28}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.記f0(x)=sinx,f1(x)=f0'(x),f2(x)=f1'(x),…,fn(x)=fn-1'(x),n∈N,則f2015(x)=( 。
A.sin xB.-sin xC.cos xD.-cos x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知(x+1)15=a0+a1x+a2x2+…+a15x15,則a0+a1+a2+…+a7=(  )
A.215B.214C.28D.27

查看答案和解析>>

同步練習(xí)冊(cè)答案