【題目】過(guò)點(diǎn)(-1,-2)的直線被圓x2+y2-2x-2y+1=0截得的弦長(zhǎng)為,則直線的斜率為________
【答案】1或
【解析】
求出圓心坐標(biāo)和半徑r,由弦長(zhǎng)及半徑,利用垂徑定理及勾股定理求出圓心到直線的距離d ,設(shè)出直線的斜率,由直線過(guò)(﹣1,﹣2),表示出直線l的方程,利用點(diǎn)到直線的距離公式列出關(guān)于k的方程,解出k的值,即為直線l的斜率.
將圓的方程化為標(biāo)準(zhǔn)方程得:(x﹣1)2+(y﹣1)2=1,∴圓心坐標(biāo)為(1,1),半徑r=1,
又弦長(zhǎng)為,∴圓心到直線的距離,
設(shè)直線的斜率為k,又直線過(guò)(﹣1,﹣2),∴直線的方程為y+2=k(x+1),即kx﹣y+k﹣2=0,
∴,即(k﹣1)(7k﹣17)=0,解得:k=1或k=,則直線的斜率為1或.
故答案為1或
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】第35屆牡丹花會(huì)期間,我班有5名學(xué)生參加志愿者服務(wù),服務(wù)場(chǎng)所是王城公園和牡丹公園.
(1)若學(xué)生甲和乙必須在同一個(gè)公園,且甲和丙不能在同一個(gè)公園,則共有多少種不同的分配方案?
(2)每名學(xué)生都被隨機(jī)分配到其中的一個(gè)公園,設(shè)分別表示5名學(xué)生分配到王城公園和牡丹公園的人數(shù),記,求隨機(jī)變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)為圓上一點(diǎn),軸于點(diǎn),軸于點(diǎn),點(diǎn)滿足(為坐標(biāo)原點(diǎn)),點(diǎn)的軌跡為曲線.
(Ⅰ)求的方程;
(Ⅱ)斜率為的直線交曲線于不同的兩點(diǎn)、,是否存在定點(diǎn),使得直線、的斜率之和恒為0.若存在,則求出點(diǎn)的坐標(biāo);若不存在,則請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)某大學(xué)的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結(jié)論中不正確的是
A. y與x具有正的線性相關(guān)關(guān)系
B. 回歸直線過(guò)樣本點(diǎn)的中心(,)
C. 若該大學(xué)某女生身高增加1cm,則其體重約增加0.85kg
D. 若該大學(xué)某女生身高為170cm,則可斷定其體重比為58.79kg
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某縣教育局為了檢查本縣甲、乙兩所學(xué)校的學(xué)生對(duì)安全知識(shí)的學(xué)習(xí)情況,在這兩所學(xué)校進(jìn)行了安全知識(shí)測(cè)試,隨機(jī)在這兩所學(xué)校各抽取20名學(xué)生的考試成績(jī)作為樣本,成績(jī)大于或等于80分的為優(yōu)秀,否則為不優(yōu)秀,統(tǒng)計(jì)結(jié)果如下圖:
甲校 乙校
(1)從乙校成績(jī)優(yōu)秀的學(xué)生中任選兩名,求這兩名學(xué)生的成績(jī)恰有一個(gè)落在內(nèi)的概率;
(2)由以上數(shù)據(jù)完成下面列聯(lián)表,并回答能否在犯錯(cuò)的概率不超過(guò)0.1的前提下認(rèn)為學(xué)生的成績(jī)與兩所學(xué)校的選擇有關(guān)。
甲校 | 乙校 | 總計(jì) | |
優(yōu)秀 | |||
不優(yōu)秀 | |||
總計(jì) |
參考數(shù)據(jù) | P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.706 | span>3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有個(gè)零件,已知其中有個(gè)正品、個(gè)次品.現(xiàn)隨機(jī)地逐一檢查,則恰好在檢查第個(gè)零件查出了所有次品的概率為( ).
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給定公差大于0的有限正整數(shù)等差數(shù)列,其中,為質(zhì)數(shù).甲、乙兩人輪流從個(gè)石子中取石子,規(guī)定:每次每人可取個(gè)石子,取走的石子不再放回,甲先取,取到最后一個(gè)石子者為勝.試問(wèn):誰(shuí)有必勝策略?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓()的左右焦點(diǎn)分別為,左右頂點(diǎn)分別為,過(guò)右焦點(diǎn)且垂直于長(zhǎng)軸的直線交橢圓于兩點(diǎn),,的周長(zhǎng)為.過(guò)點(diǎn)作直線交橢圓于第一象限的點(diǎn),直線交橢圓于另一點(diǎn),直線與直線交于點(diǎn);
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若的面積為,求直線的方程;
(3)證明:點(diǎn)在定直線上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,經(jīng)過(guò)點(diǎn)且斜率為的直線與橢圓有兩個(gè)不同的交點(diǎn)和.
(1)求的取值范圍;
(2)設(shè)橢圓與軸正半軸、軸正半軸的交點(diǎn)分別為,是否存在常數(shù),使得向量與共線?如果存在,求值;如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com