【題目】第35屆牡丹花會期間,我班有5名學生參加志愿者服務,服務場所是王城公園和牡丹公園.
(1)若學生甲和乙必須在同一個公園,且甲和丙不能在同一個公園,則共有多少種不同的分配方案?
(2)每名學生都被隨機分配到其中的一個公園,設分別表示5名學生分配到王城公園和牡丹公園的人數,記,求隨機變量的分布列和數學期望.
科目:高中數學 來源: 題型:
【題目】某市為了增強民眾防控病毒的意識,舉行了“預防新冠病毒知識競賽”網上答題,隨機抽取人,答題成績統計如圖所示.
(1)由直方圖可認為答題者的成績服從正態(tài)分布,其中,分別為答題者的平均成績和成績的方差,那么這名答題者成績超過分的人數估計有多少人?(同一組中的數據用該組的區(qū)間中點值作代表)
(2)如果成績超過分的民眾我們認為是“防御知識合格者”,用這名答題者的成績來估計全市的民眾,現從全市中隨機抽取人,“防御知識合格者”的人數為,求.(精確到)
附:①,;②,則,;③,.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了調查某品牌飲料的某種食品添加劑是否超標,現對該品牌下的兩種飲料一種是碳酸飲料含二氧化碳,另一種是果汁飲料不含二氧化碳進行檢測,現隨機抽取了碳酸飲料、果汁飲料各10瓶均是組成的一個樣本,進行了檢測,得到了如下莖葉圖根據國家食品安全規(guī)定當該種添加劑的指標大于毫克為偏高,反之即為正常.
(1)依據上述樣本數據,完成下列列聯表,并判斷能否在犯錯誤的概率不超過的前提下認為食品添加劑是否偏高與是否含二氧化碳有關系?
正常 | 偏高 | 合計 | |
碳酸飲料 | |||
果汁飲料 | |||
合計 |
(2)現從食品添加劑偏高的樣本中隨機抽取2瓶飲料去做其它檢測,求這兩種飲料都被抽到的概率.
參考公式:,其中
參考數據:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】有甲、乙兩家公司都需要招聘求職者,這兩家公司的聘用信息如下:
甲公司 | 乙公司 | |||||||||
職位 | A | B | C | D | 職位 | A | B | C | D | |
月薪/元 | 6000 | 7000 | 8000 | 9000 | 月薪/元 | 5000 | 7000 | 9000 | 11000 | |
獲得相應職位概率 | 0.4 | 0.3 | 0.2 | 0.1 | 獲得相應職位概率 | 0.4 | 0.3 | 0.2 | 0.1 | |
(1)根據以上信息,如果你是該求職者,你會選擇哪一家公司?說明理由;
(2)某課外實習作業(yè)小組調查了1000名職場人士,就選擇這兩家公司的意愿做了統計,得到以下數據分布:
選擇意愿 人員結構 | 40歲以上(含40歲)男性 | 40歲以上(含40歲)女性 | 40歲以下男性 | 40歲以下女性 |
選擇甲公司 | 110 | 120 | 140 | 80 |
選擇乙公司 | 150 | 90 | 200 | 110 |
若分析選擇意愿與年齡這兩個分類變量,計算得到的K2的觀測值為k1=5.5513,測得出“選擇意愿與年齡有關系”的結論犯錯誤的概率的上限是多少?并用統計學知識分析,選擇意愿與年齡變量和性別變量哪一個關聯性更大?
附:
0.050 | 0.025 | 0.010 | 0.005 | |
3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,已知平面,且四邊形為直角梯形,,,.
(1)求平面與平面所成銳二面角的余弦值;
(2)點是線段上的動點,當直線與所成的角最小時,求線段的長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在五面體中,四邊形是邊長為的正方形,平面⊥平面, .
(Ⅰ) 求證:;
(Ⅱ) 求證:平面⊥平面;
(Ⅲ) 在線段上是否存在點,使得⊥平面? 說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】把,,,四本不同的書分給三位同學,每人至少分到一本,每本書都必須有人分到,,不能同時分給同一個人,則不同的分配方式共有__________種(用數字作答).
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com