13.已知不等式組$\left\{\begin{array}{l}{x+y-2≤0}\\{x-2y-2≤0}\\{2x-y+2≥0}\end{array}\right.$表示的平面區(qū)域?yàn)镈,若存在x∈D,使得y=x+$\frac{mx}{|x|}$,則實(shí)數(shù)m的取值范圍是[-2,2).

分析 由約束條件作出可行域,分類化簡(jiǎn)y=x+$\frac{mx}{|x|}$,然后分x>0和x<0兩類求出m的取值范圍,取并集得答案.

解答 解:由約束條件$\left\{\begin{array}{l}{x+y-2≤0}\\{x-2y-2≤0}\\{2x-y+2≥0}\end{array}\right.$作出可行域如圖,

當(dāng)x>0時(shí),y=x+$\frac{mx}{|x|}$=x+m;
當(dāng)x<0時(shí),y=x+$\frac{mx}{|x|}$=x-m.
作出直線y=x,由圖可知,當(dāng)x>0時(shí),平移y=x至A,此時(shí)y=x+m的截距m最小為-2,
向上平移y=x,可得y=x+m的截距m<2;
當(dāng)x<0時(shí),直線y=x+m的縱截距m∈(-1,2).
∴若存在x∈D,使得y=x+$\frac{mx}{|x|}$,則實(shí)數(shù)m的取值范圍是[-2,2).
故答案為:[-2,2).

點(diǎn)評(píng) 本題考查簡(jiǎn)單的線性規(guī)劃,考查數(shù)形結(jié)合的解題思想方法和數(shù)學(xué)轉(zhuǎn)化思想方法,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.如圖,四棱錐P-ABCD的一個(gè)側(cè)面PAD為等邊三角形,且平面PAD⊥平面ABCD,四邊形ABCD是平行四邊形,AD=2,AB=4,BD=2$\sqrt{3}$
(1)求證;PA⊥BD
(2)求二面角D-BC-P的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知奇函數(shù)f(x)=Acos(ωx+φ)(A>0,ω>0,0<φ<π)的導(dǎo)函數(shù)的部分圖象如圖所示,E是最高點(diǎn),且△MNE是邊長(zhǎng)為1的正三角形,那么$f({\frac{1}{3}})$=( 。
A.$-\frac{{\sqrt{3}}}{2π}$B.$-\frac{1}{2}$C.$\frac{1}{4}$D.$-\frac{3}{4π}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知集合A={(x,y)|y2<x},B={(x,y)|xy=-2,x∈Z,y∈Z},則A∩B=(  )
A.B.{(2,-1)}C.{(-1,2),(-2,1)}D.{(1,-2),(-1,2),(-2,1)}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知f(x)=sin4ωx-cos4ωx(ω>0)的值域?yàn)锳,若對(duì)任意a∈R,存在x1,x2∈R且x1<x2,使得{y|y=f(x),a≤x≤a+2}=[f(x1),f(x2)]=A,設(shè)x2-x1的最小值為g(ω),則g(ω)的值域?yàn)椋?,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知f(x)=$\frac{1}{1+x}$.
(1)解不等式f(|x|)>|f(2x)|;
(2)若0<x1<1,x2=f(x1),x3=f(x2),求證:$\frac{1}{3}$|x2-x1|<|x3-x2|<$\frac{1}{2}$|x2-x1|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.如圖,在正三棱柱ABC-A1B1C1中,點(diǎn)E,F(xiàn)分別是棱CC1,BB1上的點(diǎn),且EC=2FB.
(Ⅰ)證明:平面AEF⊥平面ACC1A1
(Ⅱ)若AB=EC=2,求二面角C-AF-E的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.如圖,在三棱柱ABC-A1B1C1中,側(cè)面A1ABB1是菱形,側(cè)面C1CBB1是矩形.
(1)D是棱B1C1上一點(diǎn),AC1∥平面A1BD,求證:D為B1C1的中點(diǎn);
(2)若A1B⊥AC1,求證:平面A1ABB1⊥平面C1CBB1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知a,b,c分別是△ABC的三個(gè)內(nèi)角A,B,C的三條對(duì)邊,且csinC-asinA=(b-a)sinB.
(Ⅰ)求角C的大;
(Ⅱ)求cosA+cosB的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案