在數(shù)列{an}中,都有an2-an-12=p(n≥2,n∈N*)(p為常數(shù)),則稱{an}為“等方差數(shù)列”.下列是對“等方差數(shù)列”的判斷:
(1)數(shù)列{(-1)n}是等方差數(shù)列;
(2)數(shù)列{an}是等方差數(shù)列,則數(shù)列{an2}也是等方差數(shù)列;
(3)若數(shù)列{an}既是等方差數(shù)列,又是等差數(shù)列,則該數(shù)列必為常數(shù)列;
(4)若數(shù)列{an}是等方差數(shù)列,則數(shù)列{akn}(k為常數(shù),k∈N*)也是等方差數(shù)列.
則正確命題序號為   
【答案】分析:利用等方差的定義一個一個地進(jìn)行演算,能夠推出(2)不正確,其作的都正確.
解答:解:(1)數(shù)列{(-1)n}中,an2-an-12=[(-1)n]2-[(-1)n-1]2=0,(n≥2,n∈N*),
∴數(shù)列{(-1)n}是等方差數(shù)列.故(1)成立.
(2)例如:數(shù)列{}是等方差數(shù)列,但是數(shù)列{n}不是等方差數(shù)列,
所以(2)不正確.
(3)∵數(shù)列{an}是等差數(shù)列,∴an-an-1=d.∵數(shù)列{an}是等方差數(shù)列,∴an2-an-12=m,
∴(an-an-1)d=m,∴當(dāng)d≠0時,,既是等方差數(shù)列,又是等差數(shù)列,則該數(shù)列必為常數(shù)列.
(4)數(shù)列{an}中的項(xiàng)列舉出來是:a1,a2,…,ak,…,a2k,…
數(shù)列{akn}中的項(xiàng)列舉出來是:ak,a2k,a3k,…
∵(ak+12-ak2)=(ak+22-ak+12)=…=a2k2-a2k-12=p
∴(ak+12-ak2)+(ak+22-ak+12)+…+(a2k2-a2k-12)=kp
∴akn+12-akn2=kp,所以,數(shù)列{akn}是等方差數(shù)列.
故正確命題序號為(1)、(3)、(4).
點(diǎn)評:本題考查數(shù)列的性質(zhì)及其應(yīng)用,解題時要注意掌握數(shù)列的概念.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,都有an2-an-12=p(n≥2,n∈N*)(p為常數(shù)),則稱{an}為“等方差數(shù)列”.下列是對“等方差數(shù)列”的判斷:
(1)數(shù)列{(-1)n}是等方差數(shù)列;
(2)數(shù)列{an}是等方差數(shù)列,則數(shù)列{an2}也是等方差數(shù)列;
(3)若數(shù)列{an}既是等方差數(shù)列,又是等差數(shù)列,則該數(shù)列必為常數(shù)列;
(4)若數(shù)列{an}是等方差數(shù)列,則數(shù)列{akn}(k為常數(shù),k∈N*)也是等方差數(shù)列.
則正確命題序號為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•湖北模擬)給出定義:在數(shù)列{an}中,都有
a
2
n
-
a
2
n-1
=p(n≥2,n∈N*)
( p為常數(shù)),則稱{an}為“等方差數(shù)列”.下列是對“等方差數(shù)列”的判斷:
(1)數(shù)列{an}是等方差數(shù)列,則數(shù)列{
a
2
n
}
是等差數(shù)列;
(2)數(shù)列{(-1)n}是等方差數(shù)列;
(3)若數(shù)列{an}既是等方差數(shù)列,又是等差數(shù)列,則該數(shù)列必為常數(shù)數(shù)列;
(4)若數(shù)列{an}是等方差數(shù)列,則數(shù)列{akn}(k∈N*,k為常數(shù))也是等方差數(shù)列.
其中正確命題序號為
(1)(2)(3)(4)
(1)(2)(3)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:湖北模擬 題型:填空題

給出定義:在數(shù)列{an}中,都有
a2n
-
a2n-1
=p(n≥2,    n∈N*)
( p為常數(shù)),則稱{an}為“等方差數(shù)列”.下列是對“等方差數(shù)列”的判斷:
(1)數(shù)列{an}是等方差數(shù)列,則數(shù)列{
a2n
}
是等差數(shù)列;
(2)數(shù)列{(-1)n}是等方差數(shù)列;
(3)若數(shù)列{an}既是等方差數(shù)列,又是等差數(shù)列,則該數(shù)列必為常數(shù)數(shù)列;
(4)若數(shù)列{an}是等方差數(shù)列,則數(shù)列{akn}( k∈N*,k為常數(shù))也是等方差數(shù)列.
其中正確命題序號為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年四川省綿陽市南山中學(xué)高三(上)9月月考數(shù)學(xué)試卷(文科)(解析版) 題型:填空題

在數(shù)列{an}中,都有an2-an-12=p(n≥2,n∈N*)(p為常數(shù)),則稱{an}為“等方差數(shù)列”.下列是對“等方差數(shù)列”的判斷:
(1)數(shù)列{(-1)n}是等方差數(shù)列;
(2)數(shù)列{an}是等方差數(shù)列,則數(shù)列{an2}也是等方差數(shù)列;
(3)若數(shù)列{an}既是等方差數(shù)列,又是等差數(shù)列,則該數(shù)列必為常數(shù)列;
(4)若數(shù)列{an}是等方差數(shù)列,則數(shù)列{akn}(k為常數(shù),k∈N*)也是等方差數(shù)列.
則正確命題序號為   

查看答案和解析>>

同步練習(xí)冊答案