2.已知曲線C的極坐標(biāo)方程為ρ2-2$\sqrt{2}$ρcos(θ+$\frac{π}{4}$)-2=0,以極點為平面直角坐標(biāo)系的原點,極軸為x軸的正半軸,建立平面直角坐標(biāo)系xOy,若直線l過原點,且被曲線C截得的弦長最小,求直線l的直角坐標(biāo)方程.

分析 利用ρ2=x2+y2,x=ρcosθ,y=ρsinθ即把曲線C的極坐標(biāo)方程化為直角坐標(biāo)方程,利用垂徑定理、相互垂直的直線斜率之間的關(guān)系即可得出.

解答 解:曲線C的極坐標(biāo)方程為ρ2-2$\sqrt{2}$ρcos(θ+$\frac{π}{4}$)-2=0,
展開化為:曲線C的極坐標(biāo)方程為ρ2-2$\sqrt{2}$×$\frac{\sqrt{2}}{2}$(ρcosθ-ρsinθ)-2=0,
可得直角坐標(biāo)方程:x2+y2-2x+2y-2=0,配方為:(x-1)2+(y+1)2=4,
可得圓心C(1,-1),半徑r=2.
∵直線l過原點,且被曲線C截得的弦長最小,∴OC⊥l,
∵kOC=-1,∴kl=1.
∴直線l的直角坐標(biāo)方程為y=x.

點評 本題考查了極坐標(biāo)方程化為直角坐標(biāo)方程、垂徑定理、相互垂直的直線斜率之間的關(guān)系,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知數(shù)列{an}中,an-$\frac{2}{{a}_{n}}$=2n,且an<0.
(1)求an
(2)判斷數(shù)列{an}的增減性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若關(guān)于x的不等式|ax+2|<3的解集為{x|-$\frac{5}{4}$<x<$\frac{1}{4}$},則實數(shù)a的值為(  )
A.4B.-$\frac{4}{5}$C.-20D.-25

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.(理科做)已知a,b,c分別是△ABC的角A,B,C的對邊,$\overrightarrow{m}$=(2a+c,b),$\overrightarrow{n}$=(cosB,cosC),且$\overrightarrow{m}$•$\overrightarrow{n}$=0.
(1)若b=$\sqrt{21}$,S△ABC=$\sqrt{3}$,求a的值;
(2)若b=$\sqrt{3}$,求△ABC外接圓半徑長及△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖甲,圓O的直徑AB=2,圓上兩點C,D在直徑AB的兩側(cè),使∠CAB=$\frac{π}{4}$,∠DAB=$\frac{π}{3}$,沿直徑AB折起,使兩個半圓所在的平面互相垂直(如圖乙),F(xiàn)為BC的中點,根據(jù)圖乙解答下列各題:
(1)求點B到平面ACD的距離;
(2)如圖:若∠DOB的平分線交$\widehat{BD}$于一點G,試判斷FG是否與平面ACD平行?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在底面為正方形的四棱錐S-ABCD中,AD⊥平面ABCD,E、F是AS、BC的中點,
(Ⅰ)求證:BE∥平面SDF;
(Ⅱ)若AB=5,求點E到平面SDF的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知直二面角α-l-β,點A∈α,AC⊥l,C為垂足,B∈β,BD⊥l,D為垂足,若AB=3,AC=BD=2,則D到平面ABC的距離等于(  )
A.$\frac{\sqrt{2}}{3}$B.$\frac{\sqrt{5}}{5}$C.$\frac{2\sqrt{5}}{5}$D.$\frac{\sqrt{5}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若直線l的參數(shù)方程為$\left\{{\begin{array}{l}{x=1+3t}\\{y=2-4t}\end{array}}\right.$(t為參數(shù)),則直線l傾斜角的余弦值為( 。
A.-$\frac{4}{5}$B.-$\frac{3}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知冪函數(shù)f(x)=x${\;}^{{m}^{2}-m-3}$(其中m∈N*且m≥2)為奇函數(shù),且在(0,+∞)上是單調(diào)減函數(shù).
(1)求函數(shù)f(x);
(2)比較f(-2013)與f(-2014)的大。

查看答案和解析>>

同步練習(xí)冊答案