【題目】如圖,在四棱錐中,底面為直角梯形,,,平面底面,的中點,是棱上的點,,,.

1)若的中點,求證:;

2)若二面角,設(shè),試確定的值.

【答案】(1)證明見解析 2

【解析】

(1)連接,交,連接.證明.利用直線與平面平行的判定定理證明平面
(2)以為原點,分別為軸建立空間直角坐標系.求出平面的法向量,平面法向量,利用二面角,求解的值,得到答案.

1)證明:連接,交,連接
,

四邊形為平行四邊形,且中點,
又∵點是棱的中點,所以
平面,平面.
.

(2) ,的中點,∴
∵平面平面,且平面平面,
平面

的中點,∴四邊形為平行四邊形,∴
,∴

為原點,分別為軸建立空間直角坐標系.

則平面的法向量為

設(shè)

設(shè)平面的法向量為

可取

由二面角

所以

化簡得:,解得:(舍)

所以,則

所以.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,直線的參數(shù)方程為為參數(shù)),以為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為,點是曲線上的動點,點的延長線上,且,點的軌跡為

(1)求直線及曲線的極坐標方程;

(2)若射線與直線交于點,與曲線交于點(與原點不重合),求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若,求的單調(diào)區(qū)間;

(2)若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線,過焦點的斜率存在的直線與拋物線交于,,且

1)求拋物線的方程;

2)已知與拋物線交于點(異于原點),過點作斜率小于的直線交拋物線于兩點(點之間),過點軸的平行線,交,交B,的面積分別為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C過點M1,),兩個焦點為A(﹣1,0),B1,0),O為坐標原點.

1)求橢圓C的方程;

2)直線l過點A(﹣10),且與橢圓C交于P,Q兩點,求BPQ面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù).

(1)若函數(shù)在區(qū)間為自然對數(shù)的底數(shù))上有唯一的零點,求實數(shù)的取值范圍;

(2)若在為自然對數(shù)的底數(shù))上存在一點,使得成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2022年第24屆冬奧會將在中國北京和張家口舉行,為了宣傳冬奧會,某大學從全校學生中隨機抽取了120名學生,對是否收看第23屆平昌冬奧會開幕式情況進行了問卷調(diào)查,統(tǒng)計數(shù)據(jù)如下:

收看

沒收看

男生

60

20

女生

20

20

1)根據(jù)上表數(shù)據(jù),能否有的把握認為,收看開幕式與性別有關(guān)?

2)現(xiàn)從參與問卷調(diào)查且收看了開幕式的學生中,采用按性別分層抽樣的方法選取8人,參加2022年北京冬奧會志愿者宣傳活動,若從這8人中隨機選取2人到較廣播站開展冬奧會及冰雪項目宣傳介紹,求恰好選到一名男生一名女生的概率.

附:,其中.

P

0.10

0.05

0.025

0.01

0.005

2.706

3.841

5.024

6.635

7.879

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠預購軟件服務(wù),有如下兩種方案:

方案一:軟件服務(wù)公司每日收取工廠60元,對于提供的軟件服務(wù)每次10元;

方案二:軟件服務(wù)公司每日收取工廠200元,若每日軟件服務(wù)不超過15次,不另外收費,若超過15次,超過部分的軟件服務(wù)每次收費標準為20元.

(1)設(shè)日收費為元,每天軟件服務(wù)的次數(shù)為,試寫出兩種方案中的函數(shù)關(guān)系式;

(2)該工廠對過去100天的軟件服務(wù)的次數(shù)進行了統(tǒng)計,得到如圖所示的條形圖,依據(jù)該統(tǒng)計數(shù)據(jù),把頻率視為概率,從節(jié)約成本的角度考慮,從兩個方案中選擇一個,哪個方案更合適?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在四棱錐中,底面是菱形,,交于點,底面的中點,.

(1)求證: 平面;

(2)求異面直線所成角的余弦值;

(3)求與平面所成角的正弦值.

查看答案和解析>>

同步練習冊答案