2.函數(shù)y=loga(sinx+cosx),(0<a<1)的單調(diào)增區(qū)間為[2kπ+$\frac{π}{4}$,2kπ+$\frac{3π}{4}$),k∈Z.

分析 根據(jù)復(fù)合函數(shù)的單調(diào)性,得到函數(shù)f(x)=sinx+cosx為一個(gè)角的一個(gè)三角函數(shù)的形式,然后根據(jù)函數(shù)的單調(diào)性求解即可.

解答 解:由0<a<1,得y=logaf(x)遞減,
令f(x)=sinx+cosx=$\sqrt{2}$sin(x+$\frac{π}{4}$)那么單調(diào)遞減區(qū)間
2kπ+$\frac{π}{2}$≤x+$\frac{π}{4}$<2kπ+π,k∈Z
2kπ+$\frac{π}{4}$≤x<2kπ+$\frac{3π}{4}$,
故f(x)的單調(diào)遞減區(qū)間[2kπ+$\frac{π}{4}$,2kπ+$\frac{3π}{4}$),k∈Z,
根據(jù)復(fù)合函數(shù)同增異減的原則,
則y=loga(sinx+cosx)在[2kπ+$\frac{π}{4}$,2kπ+$\frac{3π}{4}$)(k∈Z)遞增,
故答案為:[2kπ+$\frac{π}{4}$,2kπ+$\frac{3π}{4}$),k∈Z.

點(diǎn)評(píng) 本題考查復(fù)合函數(shù)的單調(diào)性,正弦函數(shù)的單調(diào)性,考查計(jì)算能力,是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.定義在R上的函數(shù)f(x)滿足f(x+2)=f(x),且在區(qū)間[-1,1)上,f(x)=$\left\{\begin{array}{l}x-m,-1≤x<0\\|x-\frac{2}{5}|,0≤x<1\end{array}$,其中m∈R,若$f(-\frac{5}{2})=f(\frac{9}{2})$,則f(5m)=$-\frac{2}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.(1)已知一條直線經(jīng)過(guò)點(diǎn)$P({-2,\sqrt{3}})$,Q(-1,0),求直線PQ的方程.(用一般式表示)
(2)已知一條直線經(jīng)過(guò)點(diǎn)P(2,3),且在x軸,y軸上的截距相等,求該直線的方程.(用一般式表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.下列函數(shù)中,最小正周期為π的奇函數(shù)是( 。
A.y=|cotx|sinxB.$y=cos({2x-\frac{π}{2}})$C.y=sin2x+cos2xD.y=tanx-cotx

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.如圖,攝影愛好者在某公園A處,發(fā)現(xiàn)正前方B處有一立柱,測(cè)得頂端O的仰角和立柱底部B的俯角均為30°,已知攝影愛好者的身高約為$\sqrt{3}$米(將眼睛S距地面的距離SA按$\sqrt{3}$米處理)
(1)求攝影愛好者到立柱的水平距離AB和立柱的高度OB
(2)立柱的頂端有一長(zhǎng)為2米的彩桿MN,且MN繞其中點(diǎn)O在攝影愛好者與立柱所在的平面內(nèi)旋轉(zhuǎn).在彩桿轉(zhuǎn)動(dòng)的任意時(shí)刻,攝影愛好者觀察彩桿MN的視角∠MSN是否存在最大值?若存在,求出∠MSN的最大值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.設(shè)扇形AOB的周長(zhǎng)為8 cm,若這個(gè)扇形的面積為4 cm2,則圓心角的弧度數(shù)為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.函數(shù)$f(x)=arcsin({\frac{x}{3}-1})$的定義域?yàn)閇0,6].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.如果$sinα=\frac{2}{3}$,$cosβ=-\frac{1}{4}$,α與β為同一象限角,則cos(α-β)=$\frac{\sqrt{5}+2\sqrt{15}}{12}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.計(jì)算:log23-log26=-1.

查看答案和解析>>

同步練習(xí)冊(cè)答案