精英家教網 > 高中數學 > 題目詳情

【題目】某校為了普及環(huán)保知識,增強學生的環(huán)保意識,在全校組織了一次有關環(huán)保知識的競賽,經過初賽、復賽,甲、乙兩個代表隊(每隊人)進入了決賽,規(guī)定每人回答一個問題,答對為本隊贏得分,答錯得分,假設甲隊中每人答對的概率均為,乙隊中人答對的概率分別為,且各人回答正確與否相互之間沒有影響,用表示乙隊的總得分.

(1)求的分布列;

(2)求甲、乙兩隊總得分之和等于分且甲隊獲勝的概率.

【答案】1)分布列見解析;(2

【解析】

試題(1)由題意知,的可能取值為,分別求出相應的概率,由此能求出的分布列;(2)由表示甲隊得分等于乙隊得分等于,表示甲隊得分等于乙隊得分等于,可知互斥.利用互斥事件的概率計算公式即可得出甲、乙兩隊總得分之和等于分且甲隊獲勝的概率.

試題解析:(1)由題意知,的可能取值為由于乙隊人答對的概率分別為,

,

,

,

,的分布列為:











2)由表示甲隊得分等于乙隊得分等于”,表示甲隊得分等于乙隊得分等于”, 可知互斥, ,則甲、乙兩隊總得分之和等于分且甲隊獲勝的概率為

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數.

1)求在點處的切線方程;

2)若不等式恒成立,求k的取值范圍;

3)求證:當時,不等式成立.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】程序框圖如圖所示,若其輸出結果是140,則判斷框中填寫的是(

A.B.C.D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列的各項均為整數,其前n項和為.規(guī)定:若數列滿足前r項依次成公差為1的等差數列,從第項起往后依次成公比為2的等比數列,則稱數列為“r關聯(lián)數列”.

(1)若數列為“6關聯(lián)數列”,求數列的通項公式;

(2)在(1)的條件下,求出,并證明:對任意,

3)若數列為“6關聯(lián)數列”,當,之間插入n個數,使這個數組成一個公差為的等差數列,求,并探究在數列中是否存在三項,其中m,kp成等差數列)成等比數列?若存在,求出這樣的三項;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知直線是雙曲線的一條漸近線,點都在雙曲線上,直線軸相交于點,設坐標原點為.

1)求雙曲線的方程,并求出點的坐標(用表示);

2)設點關于軸的對稱點為,直線軸相交于點.問:在軸上是否存在定點,使得?若存在,求出點的坐標;若不存在,請說明理由.

3)若過點的直線與雙曲線交于兩點,且,試求直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了檢測某種零件的一條生產線的生產過程,從生產線上隨機抽取一批零件,根據其尺寸的數據分成,,,,組,得到如圖所示的頻率分布直方圖.若尺寸落在區(qū)間之外,則認為該零件屬不合格的零件,其中分別為樣本平均和樣本標準差,計算可得(同一組中的數據用該組區(qū)間的中點值作代表).

1)若一個零件的尺寸是,試判斷該零件是否屬于不合格的零件;

2)工廠利用分層抽樣的方法從樣本的前組中抽出個零件,標上記號,并從這個零件中再抽取個,求再次抽取的個零件中恰有個尺寸小于的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列四個命題中,真命題是(  )

A.和兩條異面直線都相交的兩條直線是異面直線

B.和兩條異面直線都相交于不同點的兩條直線是異面直線

C.和兩條異面直線都垂直的直線是異面直線的公垂線

D.是異面直線,、是異面直線,則、是異面直線

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知定義在實數集上的偶函數和奇函數滿足

1)求的解析式;

2)求證:在區(qū)間上單調遞增;并求在區(qū)間的反函數;

3)設(其中為常數),若對于恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數fx)=|x+1|+2|xm|

1)當m2時,求fx≤9的解集;

2)若fx≤2的解集不是空集,求實數m的取值范圍.

查看答案和解析>>

同步練習冊答案