【題目】已知函數(shù).

1)求在點(diǎn)處的切線方程;

2)若不等式恒成立,求k的取值范圍;

3)求證:當(dāng)時(shí),不等式成立.

【答案】(1)(2)(3)證明見解析

【解析】

1)求出函數(shù)的導(dǎo)函數(shù),利用導(dǎo)數(shù)的幾何意義即可得到切線方程;

2)由,即,構(gòu)造函數(shù),求導(dǎo)函數(shù)研究單調(diào)性,進(jìn)而得的最大值,即得的取值范圍;

3)由(2)可知:當(dāng)時(shí),恒成立,令,整理得:,將兩邊不等式全相加即可得到結(jié)論.

1)函數(shù)的定義域?yàn)?/span>

,,

,∴函數(shù)在點(diǎn)處的切線方程為,

.

2)由,,則,即,

設(shè),

,,單調(diào)遞增,

,,單調(diào)遞減,

∵不等式恒成立,且,

,∴即可,故.

3)由(2)可知:當(dāng)時(shí),恒成立,

,由于,.

故,,整理得:,

變形得:,即:時(shí),,……,

兩邊同時(shí)相加得:,

所以不等式在上恒成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)在區(qū)間上的最大值為4,最小值為1,記為.

1)求實(shí)數(shù)的值;

2)若不等式成立,求實(shí)數(shù)的取值范圍;

3)對(duì)于任意滿足的自變量,,,…,,如果存在一個(gè)常數(shù),使得定義在區(qū)間上的一個(gè)函數(shù),恒成立,則稱函數(shù)為區(qū)間上的有界變差函數(shù),試判斷函數(shù)是否是區(qū)間上的有界變差函數(shù),若是,求出的最小值;若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

2)設(shè)函數(shù),其中是自然對(duì)數(shù)的底數(shù),判斷有無極值,有極值時(shí)求出極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列為其前項(xiàng)的和,滿足.

1)求數(shù)列的通項(xiàng)公式;

2)設(shè)數(shù)列的前項(xiàng)和為,數(shù)列的前項(xiàng)和為,求證:當(dāng),時(shí)

3)已知當(dāng),且時(shí)有,其中,求滿足的所有的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的兩個(gè)焦點(diǎn),與短軸的一個(gè)端點(diǎn)構(gòu)成一個(gè)等邊三角形,且直線與圓相切.

1)求橢圓的方程;

2)已知過橢圓的左頂點(diǎn)的兩條直線,分別交橢圓,兩點(diǎn),且,求證:直線過定點(diǎn),并求出定點(diǎn)坐標(biāo);

3)在(2)的條件下求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)求在點(diǎn)處的切線方程;

2)若不等式恒成立,求k的取值范圍;

3)函數(shù),設(shè),記上得最大值為,當(dāng)最小時(shí),求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某健身館在20197、8兩月推出優(yōu)惠項(xiàng)目吸引了一批客戶.為預(yù)估20207、8兩月客戶投入的健身消費(fèi)金額,健身館隨機(jī)抽樣統(tǒng)計(jì)了201978兩月100名客戶的消費(fèi)金額,分組如下:,,,(單位:元),得到如圖所示的頻率分布直方圖:

1)請(qǐng)用抽樣的數(shù)據(jù)預(yù)估20207、8兩月健身客戶人均消費(fèi)的金額(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);

2)若把20197、8兩月健身消費(fèi)金額不低于800元的客戶,稱為健身達(dá)人,經(jīng)數(shù)據(jù)處理,現(xiàn)在列聯(lián)表中得到一定的相關(guān)數(shù)據(jù),請(qǐng)補(bǔ)全空格處的數(shù)據(jù),并根據(jù)列聯(lián)表判斷是否有的把握認(rèn)為健身達(dá)人與性別有關(guān)?

健身達(dá)人

非健身達(dá)人

總計(jì)

10

30

總計(jì)

3)為吸引顧客,在健身項(xiàng)目之外,該健身館特別推出健身配套營(yíng)養(yǎng)品的銷售,現(xiàn)有兩種促銷方案.

方案一:每滿800元可立減100元;

方案二:金額超過800元可抽獎(jiǎng)三次,每次中獎(jiǎng)的概率為,且每次抽獎(jiǎng)互不影響,中獎(jiǎng)1次打9折,中獎(jiǎng)2次打8折,中獎(jiǎng)3次打7.

若某人打算購買1000元的營(yíng)養(yǎng)品,請(qǐng)從實(shí)際付款金額的數(shù)學(xué)期望的角度分析應(yīng)該選擇哪種優(yōu)惠方案.

附:

0.150

0.100

0.050

0.010

0.005

2.072

2.706

3.841

6.635

7.879

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題:為異面直線,平面過直線且與直線平行,則直線與平面的距離等于異面直線,之間的距離為真命題.根據(jù)上述命題,若,為異面直線,且它們之間的距離為,則空間中與,均異面且距離也均為的直線的條數(shù)為(

A.0B.1C.多于1條,但為有限條D.無數(shù)多條

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校為了普及環(huán)保知識(shí),增強(qiáng)學(xué)生的環(huán)保意識(shí),在全校組織了一次有關(guān)環(huán)保知識(shí)的競(jìng)賽,經(jīng)過初賽、復(fù)賽,甲、乙兩個(gè)代表隊(duì)(每隊(duì)人)進(jìn)入了決賽,規(guī)定每人回答一個(gè)問題,答對(duì)為本隊(duì)贏得分,答錯(cuò)得分,假設(shè)甲隊(duì)中每人答對(duì)的概率均為,乙隊(duì)中人答對(duì)的概率分別為,且各人回答正確與否相互之間沒有影響,用表示乙隊(duì)的總得分.

(1)求的分布列;

(2)求甲、乙兩隊(duì)總得分之和等于分且甲隊(duì)獲勝的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案