3.為了得到函數(shù)y=log2$\sqrt{\frac{x+1}{3}}$的圖象,可將函數(shù)y=log2$\frac{x}{3}$的圖象上所有的點(diǎn)的( 。
A.縱坐標(biāo)縮短為原來的$\frac{1}{2}$(橫坐標(biāo)不變),再向左平移1個單位
B.縱坐標(biāo)縮短為原來的$\frac{1}{2}$(橫坐標(biāo)不變),再向左平移$\frac{1}{3}$個單位
C.橫坐標(biāo)伸長為原來的$\sqrt{2}$倍(縱坐標(biāo)不變),再向左平移$\frac{1}{3}$個單位
D.橫坐標(biāo)伸長為原來的2倍(縱坐標(biāo)不變),再向右平移1個單位

分析 利用函數(shù)的圖象的平移、伸縮變換規(guī)律,得出結(jié)論.

解答 解:將函數(shù)y=log2$\frac{x}{3}$的圖象上所有的點(diǎn)的縱坐標(biāo)變?yōu)樵瓉淼?\frac{1}{2}$倍,可得函數(shù)y=$\frac{1}{2}$log2$\frac{x}{3}$的圖象,
再向左平移1個單位,可得函數(shù)y=$\frac{1}{2}$log2$\frac{x+1}{3}$=log2$\sqrt{\frac{x+1}{3}}$的圖象,
故選:A.

點(diǎn)評 本題主要考查函數(shù)的圖象的平移、伸縮變換規(guī)律,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.(1)如圖1,在平行四邊形ABCD中,點(diǎn)E是對角線DB的延長線上一點(diǎn),且OB=BE.記$\overrightarrow{AB}=\overrightarrow a\;,\;\overrightarrow{AD}=\overrightarrow b$,試用向量$\overrightarrow a\;,\;\overrightarrow b$表示$\overrightarrow{AE}$.
(2)若正方形ABCD邊長為1,點(diǎn)P在線段AC上運(yùn)動,求$\overrightarrow{AP}•(\overrightarrow{PB}+\overrightarrow{PD})$的取值范圍.
(3)設(shè)$\overrightarrow{OA}=\;\overrightarrow a,\;\overrightarrow{OB}=\overrightarrow b$,已知$\overrightarrow a•\overrightarrow b=|{\overrightarrow a-\overrightarrow b}|=2$,當(dāng)△AOB的面積最大時,求∠AOB的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.求下列函數(shù)的導(dǎo)數(shù).
(1)y=3xex-log3x+ln3
(2)$y=\frac{{\sqrt{x}+{x^5}+cosx}}{x^2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.甲、乙、丙三人每人有一張游泳比賽的門票,已知每張票可以觀看指定的三場比賽中的任一場(三場比賽時間不沖突),甲乙二人約定他們會觀看同一場比賽并且他倆觀看每場比賽的可能性相同,又已知丙觀看每一場比賽的可能性也相同,且甲乙的選擇與丙的選擇互不影響.
(1)求三人觀看同一場比賽的概率;
(2)記觀看第一場比賽的人數(shù)是X,求X的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)$α∈(0,\frac{π}{2}),β∈(0,\frac{π}{4})$,且tanα=$\frac{cosβ+sinβ}{cosβ-sinβ}$,則下列正確的是( 。
A.$2α-β=\frac{π}{4}$B.$2α+β=\frac{π}{4}$C.$α-β=\frac{π}{4}$D.$α+β=\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.有甲、乙、丙、丁四位同學(xué)競選班長,其中只有一位當(dāng)選.有人走訪了四位同學(xué),甲說:“是乙或丙當(dāng)選”,乙說:“甲,丙都未當(dāng)選”,丙說:“我當(dāng)選了”,丁說:“是乙當(dāng)選了”,若四位同學(xué)的話只有兩句是對的,則當(dāng)選的同學(xué)是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)函數(shù)f(x)=Asin(ωx+φ)A>0,ω>0,|φ|<$\frac{π}{2}$)的最高點(diǎn)D的坐標(biāo)為($\frac{π}{8}$,2),由最高點(diǎn)D運(yùn)動到相鄰最低點(diǎn)時,函數(shù)圖形與x的交點(diǎn)的坐標(biāo)為($\frac{3π}{8}$,0);
(1)求函數(shù)f(x)的解析式.
(2)當(dāng)x∈[-$\frac{π}{4}$,$\frac{π}{4}$]時,求函數(shù)f(x)的最大值和最小值以及分別取得最大值和最小值時相應(yīng)的自變量x的值.
(3)將函數(shù)y=f(x)的圖象向右平移$\frac{π}{4}$個單位,得到函數(shù)y=g(x)的圖象,求函數(shù)y=g(x)的單調(diào)減區(qū)間及對稱中心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若函數(shù)$f(x)=\left\{\begin{array}{l}ln(-x),(x<0)\\ tanx,(x≥0)\end{array}\right.$,則$f(f(\frac{3π}{4}))$=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知函數(shù)y=3•2x+3的定義域?yàn)閇-1,2],則值域?yàn)閇$\frac{9}{2}$,15].

查看答案和解析>>

同步練習(xí)冊答案