15.已知數(shù)列{an}中,${a_1}=1,{a_{n+1}}=2{a_n}+n-1({n∈{N^*}})$,則其前n項(xiàng)和Sn=${2^{n+1}}-2-\frac{{n({n+1})}}{2}$.

分析 由已知求得a2=2,進(jìn)一步得到數(shù)列{an-an-1+1}為等比數(shù)列,利用等比數(shù)列的通項(xiàng)公式可得an-an-1,再由“累加求和”方法可得an.再利用等比數(shù)列的求和公式即可得出.

解答 解:∵an+1=2an+n-1(n∈N*),a1=1,∴a2=2.
n≥2時(shí),an=2an-1+n-2,
相減可得:an+1-an=2an-2an-1+1,
化為:an+1-an+1=2(an-an-1+1),
∴數(shù)列{an-an-1+1}為等比數(shù)列,首項(xiàng)為2,公比為2.
∴an-an-1+1=2×2n-1,∴an-an-1=2n-1.
∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1
=2n-1+2n-1-1+…+22-1+1
=$\frac{2(1-{2}^{n-1})}{1-2}-(n-1)+1$=2n-n.
∴其前n項(xiàng)和Sn=$\frac{2(1-{2}^{n})}{1-2}-\frac{n(n+1)}{2}$=${2^{n+1}}-2-\frac{{n({n+1})}}{2}$.
故答案為:${2^{n+1}}-2-\frac{{n({n+1})}}{2}$.

點(diǎn)評(píng) 本題考查了數(shù)列遞推關(guān)系、等比數(shù)列的通項(xiàng)公式與求和公式、“累加求和”方法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=|x+1|+|x-1|.
(1)若?x0∈R,使得不等式f(x0)≤m成立,求實(shí)數(shù)m的最小值M;
(2)在(1)的條件下,若正數(shù)a,b滿足3a+b=m,求$\frac{1}{2a}+\frac{1}{a+b}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)p:x<3,q:-1<x<3,則¬q是¬p成立的( 。
A.充分必要條件B.充分不必要條件
C.必要不充分條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)f(x)=x3+x2+mx+1在區(qū)間(-1,2)上不是單調(diào)函數(shù),則實(shí)數(shù)m的取值范圍是(  )
A.(-∞,-16)∪($\frac{1}{3}$,+∞)B.[-16,$\frac{1}{3}$]C.(-16,$\frac{1}{3}$)D.($\frac{1}{3}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.設(shè)z=1+i,則|$\overline{z}$-3|=$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.某同學(xué)參加學(xué)校自主招生3門課程的考試,假設(shè)該同學(xué)第一門課程取得優(yōu)秀成績(jī)概率為$\frac{2}{5}$,第二、第三門課程取得優(yōu)秀成績(jī)的概率分別為p,q(p<q),且不同課程是否取得優(yōu)秀成績(jī)相互獨(dú)立,記ξ為該生取得優(yōu)秀成績(jī)的課程數(shù),其分布列為
ξ0123
p$\frac{6}{125}$xy$\frac{24}{125}$
(1)求該生至少有1門課程取得優(yōu)秀成績(jī)的概率及求p,q(p<q)的值;
(2)求該生取得優(yōu)秀成績(jī)課程門數(shù)的數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知集合A={x|x2-2x-3<0},B={x|(x-m+1)(x-m-1)≥0},
(Ⅰ)當(dāng)m=0時(shí),求A∩B.
(Ⅱ)若p:x2-2x-3<0,q:(x-m+1)(x-m-1)≥0,且q是p的必要不充分條件,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.如圖,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗線畫出的是某多面體的三視圖,則該多面體的表面積為( 。
A.20+3$\sqrt{2}$B.16+8$\sqrt{2}$C.18+3$\sqrt{5}$D.18+6$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.《九章算術(shù)》中有一個(gè)“兩鼠穿墻”問題:今有垣(墻,讀音)厚五尺,兩鼠對(duì)穿,大鼠日穿(第一天挖)一尺,小鼠也日穿一尺.大鼠日自倍(以后每天加倍),小鼠日自半(以后每天減半).問何日(第幾天)兩鼠相逢(  )
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案