1.已知函數(shù)f(x)=(ax+b)lnx-bx+3在(1,f(1))處的切線方程為y=2.
(1)求a,b的值;
(2)求函數(shù)f(x)的極值.

分析 (1)將x=1代入函數(shù)表達(dá)式求出b的值,求出函數(shù)的導(dǎo)數(shù),得到切線方程,求出a的值;
(2)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的極值即可.

解答 解(1)因為f(1)=-b+3=2,
所以b=1,f(x)=(ax+b)lnx-bx+3;…(1分)
又$f'(x)=\frac{x}+alnx+a-b=\frac{1}{x}+alnx+a-1$,…(2分)
而函數(shù)在(1,f(1))處的切線方程為y=2,
所以f′(1)=1+a-1=0,所以a=0;…(3分)
(2)由(1)得f(x)=lnx-x+3,$f'(x)=\frac{1}{x}-1$,
當(dāng)0<x<1時,f'(x)>0;
當(dāng)x>1時,f'(x)<0;
所以f(x)在(0,1)上單調(diào)遞增,f(x)在(1,+∞)上單調(diào)遞減,…(6分)
所以f(x)有極大值f(1)=2,無極小值…(8分)

點評 本題考查了切線方程問題,考查函數(shù)的單調(diào)性、極值問題,考查導(dǎo)數(shù)的應(yīng)用,是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知$\overrightarrow{a}$=(2cosx,sinx),$\overrightarrow$=(cosx,sinx-$\sqrt{3}$cosx),設(shè)函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$.
(1)求f(x)圖象的對稱軸方程;
(2)求f(x)在[$\frac{5π}{12}$,π]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知函數(shù)f(x)=$\left\{\begin{array}{l}{(2x-1)^{3},x≤m}\\{|2x-1|,x>m}\end{array}\right.$,若存在實數(shù)a,使得函數(shù)g(x)=f(x)-a有兩個零點,則m的取值范圍是(-∞,$\frac{1}{2}$)∪(1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知函數(shù)y=3cosx (0≤x≤2π)的圖象和直線y=3圍成一個封閉的平面圖形,則其面積為6π..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)=x3-tx2+3x在區(qū)間[1,3]上單調(diào)遞減,則實數(shù)t的取值范圍是( 。
A.(-∞,3]B.(-∞,5]C.[3,+∞)D.[5,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.大學(xué)畢業(yè)生小張到甲、乙、丙三個單位應(yīng)聘,各單位是否錄用他是相互獨(dú)立的,其被錄用的概率分別為$\frac{4}{5}$,$\frac{2}{3}$,$\frac{3}{4}$(允許小張被多個單位同時錄用),
(1)求小張沒有被錄用的概率;
(2)求小張恰被兩個單位錄用的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.復(fù)數(shù)-1+$\frac{1}{i}$在復(fù)平面上對應(yīng)的點的坐標(biāo)是( 。
A.(1,1)B.(1,-1)C.(-1,1)D.(-1,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.若an+1=2an+1(n=1,2,3,…).且a1=1.
(1)求a2,a3,a4,a5;
(2)歸納猜想通項公式an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.某種產(chǎn)品的廣告費(fèi)支出x(單位:百萬元)與銷售額y(單位:百萬元)之間有如下對應(yīng)數(shù)據(jù):
x24568
y3040605070
$\widehatb=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}$,$\widehata=\overline y-\widehatb\overline x$
(1)求y關(guān)于x的回歸直線方程.
(2)預(yù)測廣告費(fèi)支出為10(單位:百萬元)時,銷售額為多少?

查看答案和解析>>

同步練習(xí)冊答案