11.要得到函數(shù)y=2sin2x的圖象,只需將y=$\sqrt{3}$sin2x-2sin2x+1的圖象( 。
A.向右平移$\frac{π}{12}$個單位B.向左平移$\frac{π}{12}$個單位
C.向右平移$\frac{π}{6}$個單位D.向左平移$\frac{π}{6}$個單位

分析 利用二倍角公式以及兩角和與差的三角函數(shù)化簡函數(shù)的表達式,根據“左加右減”的平移法則將y=$\sqrt{3}$sin2x-2sin2x+1向左平移$\frac{π}{12}$單位即可,從而可得答案.

解答 解:y=$\sqrt{3}$sin2x-2sin2x+1=y=$\sqrt{3}$sin2x-cos2x=2sin(2x-$\frac{π}{6}$)=2sin[2(x-$\frac{π}{12}$)],
故只需將y=2sin[2(x-$\frac{π}{12}$)]向左平移$\frac{π}{12}$個單位,
故答案選:B.

點評 本題考查二倍角公式的應用,函數(shù)y=Asin(ωx+φ)的圖象變換,掌握平移方向與平移單位是關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

1.某年級有1000名學生,隨機編號為0001,0002,…,1000,現(xiàn)用系統(tǒng)抽樣方法,從中抽出200人,若0122號被抽到了,則下列編號也被抽到的是(  )
A.0116B.0927C.0834D.0726

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知關于x的不等式2x2-2mx+m<0的解集為A,若集合A中恰好有兩個整數(shù),則實數(shù)m的取值范圍是($\frac{8}{3}$,$\frac{18}{5}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.設x∈(0,$\frac{π}{2}$),則函數(shù)y=4sin2x•cosx的最大值為$\frac{8\sqrt{3}}{9}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知函數(shù)f(x)=${(\frac{1}{2})}^{|x|}$-$\frac{1}{1+lo{g}_{\frac{1}{2}}(1+|x|)}$,使得f(x)>f(2x-1)成立的x的取值范圍是(-∞,-1)∪(-1,$\frac{1}{3}$)∪(1,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.如果角β的終邊過點P(-5,12),則sinβ+cosβ+tanβ的值為( 。
A.$\frac{47}{13}$B.-$\frac{121}{65}$C.-$\frac{47}{13}$D.$\frac{121}{65}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.設集合M={y|y=lgx,x>0},N={x|y=lnx,x>0},那么“a∈M”是“a∈N”的( 。
A.充分不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.已知f(x)的定義域為[0,2],則g(x)=f(2x+1)+f(3x)的定義域為[0,$\frac{1}{2}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.定義在D上的函數(shù)f(x),若滿足:對任意x∈D,存在常數(shù)M>0,都有|f(x)|≤M成立,則稱f(x)是D上的有界函數(shù),其中M稱為函數(shù)f(x)的上界:
(1)設f(x)=$\frac{x}{x+1}$,判斷f(x)在[-$\frac{1}{2}$,$\frac{1}{2}$]上是否有界函數(shù),若是,請說明理由,并寫出f(x)的所有上界的值的集合,若不是,也請說明理由;
(2)若函數(shù)g(x)=1+a•($\frac{1}{2}$)x+($\frac{1}{4}$)x在[0,+∞)上是以3為上界的有界函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案