分析 ①利用回旋函數(shù)的定義即可.
②若指數(shù)函數(shù)y=ax為階數(shù)為t回旋函數(shù),根據(jù)定義求解,得矛盾結(jié)論.
③利用回旋函數(shù)的定義,令x=0,則必須有a=0;令x=1,則有a2+3a+1=0,故可判斷;.
④由定義得到f(x+2)=-2f(x),由零點(diǎn)存在定理得,在區(qū)間(x,x+2)上必有一個(gè)零點(diǎn)令x=0,2,2×2,3×2,…,2016×2,即可得到.
解答 解:①函數(shù)f(x)=2為回旋函數(shù),則由f(x+t)+tf(x)=0,得2+2t=0,∴t=-1,故結(jié)論正確.
②,若指數(shù)函數(shù)y=ax為階數(shù)為t回旋函數(shù),則ax+t+tax=0,at+t=0,∴t<0,∴結(jié)論不成立.
③設(shè)f(x)=x2是回旋函數(shù),則(x+a)2+ax2=0對(duì)任意實(shí)數(shù)都成立,
令x=0,則必須有a=0,令x=1,則有a2+3a+1=0,顯然a=0不是這個(gè)方程的解,故假設(shè)不成立,該函數(shù)不是回旋函數(shù),故結(jié)論正確,
④:若f(x)是t=2的回旋函數(shù),則f(x+2)+2f(x)=0對(duì)任意的實(shí)數(shù)x都成立,
即有f(x+2)=-2f(x),則f(x+2)與f(x)異號(hào),
由零點(diǎn)存在定理得,在區(qū)間(x,x+2)上必有一個(gè)零點(diǎn),可令x=0,2,4,6,…,2016×2,
則函數(shù)f(x)在[0,4032]上至少存在2016個(gè)零點(diǎn).故結(jié)論正確
故答案為:①③④.
點(diǎn)評(píng) 本題考查命題的真假判斷,考查新定義的理解和運(yùn)用,考查函數(shù)的周期、函數(shù)的零點(diǎn)注意轉(zhuǎn)化為函數(shù)的圖象的交點(diǎn)個(gè)數(shù),綜合性較強(qiáng),難度較大.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1+3i | B. | 1-3i | C. | 3+i | D. | 3-i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4 | B. | 2$\sqrt{2}$ | C. | $\sqrt{2}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充分但不必要條件 | B. | 必要但不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com