【題目】已知函數(shù).
(1)若是的一個(gè)極值點(diǎn),求的最大值;
(2)若, ,都有 ,求實(shí)數(shù)的取值范圍.
【答案】(1);(2).
【解析】【試題分析】(1)求出函數(shù)的導(dǎo)數(shù),通過求得的值,根據(jù)單調(diào)區(qū)間求得函數(shù)的最大值.(2)將原不等式轉(zhuǎn)化為 ,構(gòu)造函數(shù),對求導(dǎo),對兩者比較大小,分成兩類,利用分離常數(shù)法求得的取值范圍.
【試題解析】
(1),
由題意得,即,所以,
所以 ,
當(dāng)時(shí), ;當(dāng)時(shí), ,
所以在上單調(diào)遞增,在上單調(diào)遞減.
所以 .
(2)由題意得, 都有
,
令函數(shù) ,
當(dāng)時(shí), 在上單調(diào)遞增,所以在上恒成立,即在上恒成立,令, ,則,
所以在上單調(diào)遞減,故,
所以實(shí)數(shù)的取值范圍為.
同理,當(dāng)時(shí), 在上單調(diào)遞減,所以在上恒成立,即在上恒成立,令, ,則,
所以在上單調(diào)遞減,故.
所以實(shí)數(shù)的取值范圍為,
綜上,實(shí)數(shù)的取值范圍為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列{an}滿足an+1+an=4n﹣3(n∈N*)
(1)若{an}是等差數(shù)列,求其通項(xiàng)公式;
(2)若{an}滿足a1=2,Sn為{an}的前n項(xiàng)和,求S2n+1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】把電影院的4張電影票隨機(jī)地分發(fā)給甲、乙、丙、丁4人,每人分得1張,事件“甲分得4排1號”與事件“乙分得4排1號”是( )
A.對立事件B.不可能事件C.互斥但不對立事件D.以上答案都不對
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=3sin()+3,x∈R.
(1)用五點(diǎn)法畫出它在一個(gè)周期內(nèi)的閉區(qū)間上的圖象;(過程可以不寫,只需畫出圖即可)
(2)求函數(shù)的單調(diào)區(qū)間;
(3)寫出如何由函數(shù)y=sinx的圖象得到函數(shù)f(x)=3sin()+3的圖象.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高三年級50名學(xué)生參加數(shù)學(xué)競賽,根據(jù)他們的成績繪制了如圖所示的頻率分布直方圖,已知分?jǐn)?shù)在的矩形面積為,
求:分?jǐn)?shù)在的學(xué)生人數(shù);
這50名學(xué)生成績的中位數(shù)精確到;
若分?jǐn)?shù)高于60分就能進(jìn)入復(fù)賽,從不能進(jìn)入復(fù)賽的學(xué)生中隨機(jī)抽取兩名,求兩人來自不同組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是平行四邊形, .
(1)求證:平面平面;
(2)若,試判斷棱上是否存在與點(diǎn)不重合的點(diǎn),使得直線與平面所成角的正弦值為,若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某船舶制造廠根據(jù)以往的生產(chǎn)銷售經(jīng)驗(yàn)得到下面有關(guān)生產(chǎn)銷售的統(tǒng)計(jì)規(guī)律:每生產(chǎn)船舶艘,其總成本為(千萬元),其中固定成本為2.8千萬元,并且每生產(chǎn)1艘的生產(chǎn)成本為1千萬元(總成本=固定成本+生產(chǎn)成本).銷售收入(千萬元)滿足:,假定該船舶制造廠產(chǎn)銷平衡(即生產(chǎn)的船舶都能賣掉),根據(jù)上述統(tǒng)計(jì)規(guī)律,請完成下列問題:
(1)寫出利潤函數(shù)的解析式(利潤=銷售收入-總成本);
(2)該廠生產(chǎn)多少艘船舶時(shí),可使盈利最多?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè):實(shí)數(shù)滿足,其中;:實(shí)數(shù)滿足.
(1)若,且為真,為假,求實(shí)數(shù)的取值范圍;
(2)若是的充分不必要條件,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱ABCA1B1C1中,AB AC,點(diǎn)E,F分別在棱BB1,CC1上(均異于端點(diǎn)),且∠ABE∠ACF,AE⊥BB1,AF⊥CC1.
求證:(1)平面AEF⊥平面BB1C1C;
(2)BC //平面AEF.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com