已知向量
a
=(2cos(-θ),2sin(-θ)),
b
=(cos(90°-θ),sin(90°-θ))
(1)求證:
a
b
;
(2)若存在不等于0的實(shí)數(shù)k和t,使
x
=
a
+(t2-3)
b
,
y
=-k
a
+t
b
滿足
x
y
.試求此時(shí)
k+t2
t
的最小值.
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專題:平面向量及應(yīng)用
分析:(1)利用誘導(dǎo)公式和數(shù)量積運(yùn)算,只要證明
a
b
=0即可;
(2)由
x
y
,可得
x
y
=0,解得k與t的關(guān)系,代入
k+t2
t
,再利用二次函數(shù)的單調(diào)性即可得出.
解答: 解:(1)∵
a
b
=2cos(-θ)cos(90°-θ)+2sin(-θ)sin(90°-θ)=2cosθsinθ-2sinθcosθ=0,
a
b

(2)
a
2
=4cos2θ+4sin2θ=4,
b
2
=sin2θ+cos2θ
=1,
x
y

x
y
=[
a
+(t2-3)
b
]•(-k
a
+t
b
)=-k
a
2
+t(t2-3)
b
2
+[t-k(t2-3)]
a
b

=-4k+t(t2-3)=0,(k≠0,t≠0).
k
t
=
t2-3
4

k+t2
t
=
t2-3
4
+t
=
1
4
(t-2)2-
7
4
≥-
7
4
點(diǎn)評(píng):本題考查了誘導(dǎo)公式和數(shù)量積運(yùn)算、向量垂直與數(shù)量積的關(guān)系、二次函數(shù)的單調(diào)性,考查了推理能力和計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F是拋物線y2=4x的焦點(diǎn),A,B是該拋物線上的兩點(diǎn),|AF|+|BF|=3,則線段AB的中點(diǎn)到y(tǒng)軸的距離為(  )
A、
3
2
B、1
C、
1
2
D、
5
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=lnx-x+1,x∈(0,+∞),g(x)=x3-ax.
(1)求曲線f(x)在點(diǎn)(l,f(1))處的切線方程;
(2)求函數(shù)f(x)的最大值;
(3)若對(duì)任意x∈(0,+∞),總存在x2∈[1,2]使得f(x1)≤g(x2)成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)的定義域?yàn)椋?,+∞),當(dāng)x>1時(shí),f(x)>0,且對(duì)于任意的x,y∈(0,+∞),恒有f(xy)=f(x)+f(y)成立.
(Ⅰ)求f(1);
(Ⅱ)證明:函數(shù)f(x)在(0,+∞)上單調(diào)遞增;
(Ⅲ)當(dāng)f(2)=1時(shí),
①解不等式f(x)+f(x-3)≤2;
②求函數(shù)f(x)在[
2
,4]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知3sinx+4cosx=5,求tanx的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求與曲線y=
3x2
在點(diǎn)P(8,4)處的切線垂直的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sin(ωx+φ)(ω>0,0≤φ≤π)的周期為π,其最高點(diǎn)的坐標(biāo)為(
π
6
,1)
(1)求φ和ω的值
(2)求f(x)的單調(diào)增區(qū)間
(3)當(dāng)x∈[0,
π
2
]時(shí),求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合A={x|x2-3x-4≥0},B={x|2a≤x≤a+2}.
(Ⅰ)若A∩B≠∅,求實(shí)數(shù)a的取值范圍;
(Ⅱ)若A∩B=B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在正方體ABCD-A1B1C1D1中,
(1)求異面直線BC與C1D1所成的角;
(2)若E為AA1的中點(diǎn),求證:AC1∥平面B1D1E.

查看答案和解析>>

同步練習(xí)冊(cè)答案