5.命題“?x>0,都有x2-x+3≤0”的否定是( 。
A.?x>0,使得x2-x+3≤0B.?x>0,使得x2-x+3>0
C.?x>0,都有x2-x+3>0D.?x≤0,都有x2-x+3>0

分析 欲寫出命題的否定,必須同時改變兩個地方:①:“?”;②:“>”即可,據(jù)此分析選項(xiàng)可得答案.

解答 解:命題“?x>0,都有x2-x+3≤0”的否定是:?x>0,使得x2-x+3>0.
故選:B.

點(diǎn)評 本題主要考查了命題的否定的寫法,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知動圓P過定點(diǎn)F(1,0)且和直線l:x=-1相切.
(1)求動點(diǎn)P的軌跡E的方程;
(2)若過點(diǎn)F的直線與軌跡E交于A,B兩點(diǎn),點(diǎn)M(-1,0),求證:直線MA、MB的斜率之和為0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知復(fù)數(shù)z滿足$\frac{\overline{z}-1}{z+1}$=$\frac{1}{2}$i,則復(fù)數(shù)z在復(fù)平面內(nèi)對應(yīng)點(diǎn)在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.函數(shù)f(x)=2x+ln x2的圖象大致為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知${(1-2x)^7}={a_o}+{a_1}x+{a_2}{x^2}+…+{a_7}{x^7}}$,那么a1+a2+…+a7等于-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x>0時,f(x)=log${\;}_{\frac{1}{2}}$x.
(1)求函數(shù)f(x)的解析式;
(2)解不等式f(x2-1)>-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在△ABC中,$∠A=\frac{π}{3}$,O為平面內(nèi)一點(diǎn),且$|{\overrightarrow{OA}}|=|{\overrightarrow{OB}}|=|{\overrightarrow{OC}}|$,M為劣弧$\widehat{BC}$上一動點(diǎn),且$\overrightarrow{OM}=p\overrightarrow{OB}+q\overrightarrow{OC}$,
則p+q的最大值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)$f(x)=\frac{{1-\sqrt{2}sin(2x-\frac{π}{4})}}{cosx}$.
(Ⅰ)求f(x)的定義域;
(Ⅱ)設(shè)α是第四象限的角,且$sinα=-\frac{12}{13}$,求f(α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.記等差數(shù)列{an}的前n項(xiàng)和為Sn
(1)求證:數(shù)列{$\frac{{S}_{n}}{n}$}是等差數(shù)列;
(2)若a1=1,對任意的n∈N*,n≥2,均有$\sqrt{{S}_{n-1}}$,$\sqrt{{S}_{n}}$,$\sqrt{{S}_{n+1}}$是公差為1的等差數(shù)列,求使$\frac{{S}_{k+1}{S}_{k+2}}{{S}_{k}^{2}}$為整數(shù)的正整數(shù)k的取值集合;
(3)記bn=a${\;}^{{a}_{n}}$(a>0),求證:$\frac{_{1}+_{2}+…+_{n}}{n}$≤$\frac{_{1}+_{n}}{2}$.

查看答案和解析>>

同步練習(xí)冊答案