12.已知雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左、右頂點為A1,A2,拋物線E以坐標原點為頂點,以A2為焦點.若雙曲線C的一條漸近線與拋物線E及其準線分別交于點M,N,若$\overrightarrow{M{A_2}}⊥\overrightarrow{{A_1}{A_2}}$,∠MA1N=135°,則雙曲線C的離心率為( 。
A.$\sqrt{5}$B.2C.$\sqrt{3}$D.$\sqrt{2}$

分析 根據(jù)拋物線和雙曲線的位置關(guān)系,得到拋物線的準線方程為x=-a,由∠MA1N=135°,得三角形MA1A2是等腰直角三角形,從而得到b=2a,進行求解即可.

解答 解:∵拋物線E以坐標原點為頂點,以A2為焦點.
∴拋物線的準線方程為x=-a
∵$\overrightarrow{M{A_2}}⊥\overrightarrow{{A_1}{A_2}}$,∴MA2⊥x軸,
設(shè)漸近線為y=$\frac{a}$x,則當x=a時,y=b,即M(a,b),
∵∠MA1N=135°,
∴∠MA1A2=45°,
即三角形MA1A2是等腰直角三角形,
則 MA2=A1A2,即b=2a,
則c=$\sqrt{{a}^{2}+^{2}}$=$\sqrt{5}$a,
則離心率e=$\frac{c}{a}$=$\sqrt{5}$,
故選:A.

點評 本題主要考查雙曲線離心率的計算,根據(jù)雙曲線和拋物線的關(guān)系確定三角形MA1A2是等腰直角三角形是解決本題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

2.已知△ABC的頂點B、C在橢圓$\frac{x^2}{4}$+y2=1上,頂點A是橢圓的一個焦點,且橢圓的另外一個焦點在BC邊上,則△ABC的周長是8.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.如圖,已知橢圓的中心在原點,焦點在x軸上,長軸長是短軸長的2倍且經(jīng)過點M(2,1),平行于OM的直線l在y軸上的截距為m(m≠0),直線l交橢圓于A,B兩個不同點.
(1)求橢圓的方程;   
(2)求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左、右頂點為A1,A2,拋物線E以坐標原點為頂點,以A2為焦點.若雙曲線C的一條漸近線與拋物線E及其準線分別交于點M,N,且$\overrightarrow{{A_1}N}=\overrightarrow{M{A_2}}$,∠MA1N=135°,則雙曲線C的離心率為( 。
A.$\sqrt{5}$B.2C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.若tanα=2,則sin2α=( 。
A.$-\frac{2}{5}$B.$-\frac{4}{5}$C.$\frac{2}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.如表中給出了2011年~2015年某市快遞業(yè)務(wù)總量的統(tǒng)計數(shù)據(jù)(單位:百萬件)
年份20112012201320142015
年份代碼12345
快遞業(yè)務(wù)總量34557185105
(Ⅰ)在圖中畫出所給數(shù)據(jù)的折線圖;
(Ⅱ)建立一個該市快遞量y關(guān)于年份代碼x的線性回歸模型;
(Ⅲ)利用(Ⅱ)所得的模型,預(yù)測該市2016年的快遞業(yè)務(wù)總量.
附:回歸直線方程的斜率和截距的最小二乘估計公式分別為:
斜率:$\widehatb=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}$,縱截距:$\widehata=\overline y-\widehatb\overline x$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知函數(shù)f(x)=(x-a)2lnx(a為常數(shù)).
(Ⅰ)若f(x)在(1,f(1))處的切線與直線2x+2y-3=0垂直.
(。┣髮崝(shù)a的值;
(ⅱ)若a非正,比較f(x)與x(x-1)的大;
(Ⅱ)如果0<a<1,判斷f(x)在(a,1)上是否有極值,若有極值是極大值還是極小值?若無極值,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知X~B(n,0.5),且E(X)=16,則D(X)=8.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知函數(shù)f(x)=$\left\{\begin{array}{l}{log_2}x,x>0\\{({\frac{1}{3}})^x},x≤0\end{array}$,則f[f(${\frac{1}{4}}$)]的值為9.

查看答案和解析>>

同步練習冊答案