10.長方形ABCD-A1B1C1D1中,已知AB=4,AD=3,AA1=2,求:
(1)直線AB與CD1,BB1與AD,AB1與BC所成角的余弦值;
(2)直線AA1與BC1,A1B1與BC的距離.

分析 (1)找出空間角,即可求出所成角的余弦值;
(2)找出空間距離,即可求出直線AA1與BC1,A1B1與BC的距離.

解答 解:(1)直線AB與CD1所成角=直線CD與CD1所成角,余弦值=$\frac{4}{\sqrt{16+4}}$=$\frac{2\sqrt{5}}{5}$
BB1與AD互相垂直,所成角的余弦值=0;
AB1與BC垂直,所成角的余弦值=0;
(2)AB是直線AA1與BC1的公垂線,∴直線AA1與BC1的距離=AB=4;
B1B是A1B1與BC的公垂線,∴直線A1B1與BC的距離=B1B=2.

點評 本題考查空間角與距離的計算,考查學生分析解決問題的能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

4.已知$\overrightarrow a$,$\overrightarrow b$均為單位向量,它們的夾角為60°,$\overrightarrow c$=λ$\overrightarrow a$+μ$\overrightarrow b$,若$\overrightarrow a$⊥$\overrightarrow c$,則下列結(jié)論正確的是( 。
A.λ-μ=0B.λ+μ=0C.2λ-μ=0D.2λ+μ=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.如圖,在三棱錐P-ABC中,PC⊥底面ABC,AB⊥BC,D是PC的中點.
(1)求證:平面ABD⊥平面PBC;
(2)若PA與平面ABC所成的角為30°,AB=BC,求二面角D-AB-C的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知在直角坐標系xOy中,圓O:x2+y2=1,把圓O的橫坐標伸長為原來的2倍,縱坐標不變,得到軌跡方程為C.
(1)以原點為極點,x軸正半軸為極軸的極坐標系下,直線l為ρcos(θ+$\frac{π}{3}$)=$\frac{\sqrt{3}}{2}$,求曲線C與直線l交點的直角坐標;
(2)若直線l1經(jīng)過點Q(2,1),直線l1與曲線C交于A,B兩點,求點Q到A,B兩點的距離之積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.如圖,△ABC中,∠ABC=90°,∠C=30°,AB=1,D為AC中點,AE⊥BD于點E,延長AE交BC于點F,沿BD將△ABC折成四面體A-BCD.
(Ⅰ)若M是FC的中點,求證:DM∥平面AEF;
(Ⅱ)若cos∠AEF=$\frac{1}{3}$,求點D到平面ABC的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.在平行六面體ABCD-A1B1C1D1中,已知AB=5,AD=3,AA1=7,∠BAD=60°,∠BAA1=∠DAA1=45°,求AC1的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知集合M={a,b,c}中的三個元素可構(gòu)成某一個三角形的三邊的長,那么此三角形一定不是( 。
A.直角三角形B.銳角三角形C.鈍角三角形D.等腰三角形

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.求下列函數(shù)的單調(diào)區(qū)間
(1)y=${a}^{{x}^{2}+2x-3}$;
(2)y=$\frac{1}{{0.2}^{x}-1}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.將棱長為1的正方體ABCD-EFGH任意平移至A1B1C1D1-E1F1G1H1,連接GH1,CB1,設M,N分別為GH1,CB1的中點,則MN的長為$\frac{\sqrt{6}}{2}$.

查看答案和解析>>

同步練習冊答案