6.已知P為拋物線(xiàn)y2=4x上任意一點(diǎn),拋物線(xiàn)的焦點(diǎn)為F,點(diǎn)A(2,1)是平面內(nèi)一點(diǎn),則|PA|+|PF|的最小值為( 。
A.1B.$\sqrt{3}$C.2D.3

分析 設(shè)點(diǎn)P在準(zhǔn)線(xiàn)上的射影為D,則根據(jù)拋物線(xiàn)的定義可知|PF|=|PD|進(jìn)而把問(wèn)題轉(zhuǎn)化為求|PA|+|PD|取得最小,進(jìn)而可推斷出當(dāng)D,P,A三點(diǎn)共線(xiàn)時(shí)|PA|+|PD|最小,答案可得.

解答 解:設(shè)點(diǎn)P在準(zhǔn)線(xiàn)上的射影為D,則根據(jù)拋物線(xiàn)的定義可知|PF|=|PD|,
∴要求|PA|+|PF|取得最小值,即求|PA|+|PD|取得最小,

當(dāng)D,P,A三點(diǎn)共線(xiàn)時(shí)|PA|+|PD|最小,為2-(-1)=3.
故選:D.

點(diǎn)評(píng) 本題考查拋物線(xiàn)的定義、標(biāo)準(zhǔn)方程,以及簡(jiǎn)單性質(zhì)的應(yīng)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.i為虛數(shù)單位,則在復(fù)平面上復(fù)數(shù)z=-1+3i對(duì)應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.若公差為2的等差數(shù)列{an}的前9項(xiàng)和為81,則a9=( 。
A.1B.9C.17D.19

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.某幾何體的三視圖如圖所示,該幾何體四個(gè)面中,面積最大的面積是( 。
A.8B.10C.6$\sqrt{2}$D.8$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.函數(shù)f(x)=$\frac{1}{2}$sin2xtanx+2sinxtan$\frac{x}{2}$的值域?yàn)椋ā 。?table class="qanwser">A.[0,4]B.[0,4)C.[0,3)∪(3,4]D.[0,3)∪(3,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知拋物線(xiàn)C:y2=2px(p>0)的焦點(diǎn)為F,A為C上異于原點(diǎn)的任意一點(diǎn),過(guò)點(diǎn)A的直線(xiàn)l交C于另一點(diǎn)B,交x軸的正半軸交于點(diǎn)D,且有|FA|=|FD|,當(dāng)點(diǎn)A的橫坐標(biāo)為3時(shí),△ADF為正三角形
(1)求C的方程
(2)延長(zhǎng)AF交拋物線(xiàn)于點(diǎn)E,過(guò)點(diǎn)E作拋物線(xiàn)的切線(xiàn)l1,求證:l1∥l.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.如圖所示,三棱柱OAD-EBC,其中A,C,B,D,E均為以O(shè)為球心,半徑為4的半球面上,EF為直徑,側(cè)面ABCD為邊長(zhǎng)等于4的正方形,則三棱柱OAD-EBC的高為( 。
A.$\frac{8\sqrt{6}}{3}$B.$\frac{4\sqrt{6}}{3}$C.$\frac{4\sqrt{3}}{3}$D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.函數(shù)f(x)=$\frac{1}{2}$x2-lnx的遞減區(qū)間為(  )
A.(-∞,1)B.(0,1)C.(1,+∞)D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知集合A={x|-1<x<2},B={x|0<x<3},則A∪B等于( 。
A.(0,2)B.(2,3)C.(-1,3)D.(-1,0)

查看答案和解析>>

同步練習(xí)冊(cè)答案