A. | [0,4] | B. | [0,4) | C. | [0,3)∪(3,4] | D. | [0,3)∪(3,4) |
分析 化簡f(x),結合二次函數(shù)的性質(zhì)以及三角函數(shù)的性質(zhì)求出函數(shù)f(x)的值域即可.
解答 解:f(x)=$\frac{1}{2}$(2sinx•cosx)•tanx+2sinx•$\frac{1-cosx}{sinx}$
=sinx•sinx+2(1-cosx)
=1-cos2x+2-2cosx
=4-(1+cosx)2;
故當cosx=-1時,f(x)max=4;
當cosx=1時,f(x)min=0,
而sinx≠0,即x≠kπ,k∈Z,
故f(x)≠3和4,
故函數(shù)f(x)的值域是[0,3)∪(3,4),
故選:D.
點評 本題考查了三角函數(shù)的恒等變換問題,考查函數(shù)的最值,是一道中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
x | 0 | 2 | 4 | 6 |
y | a | 3 | 5 | 3a |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{7}{3}$ | B. | $\frac{5}{3}$ | C. | $\frac{5}{4}$ | D. | $\frac{7}{4}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | $\sqrt{3}$ | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $({-∞,-\frac{1}{e}})$ | B. | (-∞,-e) | C. | (e,+∞) | D. | $({\frac{1}{e},+∞})$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{11}{3}$ | B. | 5 | C. | -8 | D. | -11 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com