求雙曲線9y2-16x2=144的實半軸長,虛半軸長,焦點坐標(biāo),離心率,漸近線方程.
考點:雙曲線的標(biāo)準(zhǔn)方程
專題:圓錐曲線的定義、性質(zhì)與方程
分析:把雙曲線9y2-16x2=144方程化為
y2
16
-
x2
9
=1
,由此利用雙曲線的性質(zhì)能求出結(jié)果.
解答: 解:把雙曲線9y2-16x2=144方程化為
y2
16
-
x2
9
=1

由此可知實半軸長a=4,虛半軸長b=3,c=
a2+b2
=5
,
焦點坐標(biāo)(0,-5),(0,5),
離心率e=
c
a
=
5
4
,漸近線方程為y=±
4
3
x
點評:本題考查雙曲線的實半軸長,虛半軸長,焦點坐標(biāo),離心率,漸近線方程的求法,是基礎(chǔ)題,解題時要認(rèn)真審題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對于正項數(shù)列{an},定義Hn=
n
a1+2a2+3a3+…+nan
為{an}的“給力”值,現(xiàn)知某數(shù)列的“給力”值為Hn=
2
n+2
,則數(shù)列{an}的通項公式為an=( 。
A、
1
2n
+1
B、
1
n
+1
C、
1
2
+n
D、2n-
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某單位要建造一個長方體無蓋貯水箱,其容積為48m3,深為3m,如果池底每1m2的造價為40元,池壁每1m2的造價為20元,問怎樣設(shè)計水箱能使總造價最低,最低總造價是多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}的公比為q(0<q<1),且a2+a5=
9
8
,a3a4=
1
8

(1)求數(shù)列{an}的通項公式;
(2)設(shè)該等比數(shù)列{an}的前n項和為Sn,正整數(shù)m,n滿足
Sn-m
Sn+1-m
1
2
,求出所有符合條件的m,n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a∈R,函數(shù)f(x)=lnx-ax.
(1)若a=2,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)≤0,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}的前n項和Sn=-
1
2
n2+kn(k∈N*)
,且Sn的最大值為8.
(1)確定常數(shù)k,求an;
(2)求Sn=|a1|+|a2|+|a3|+…+|an|(n∈N*
(3)求數(shù)列{
9-2an
2n
}
的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x-a
x-2a
(a∈R)
(1)若a=0,解不等式|f(x)|>1;
(2)解關(guān)于x的不等式f(x)≥-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a>0,x∈[-1,1]時,函數(shù)y=-x2-ax+b有最小值-1,最大值1,求使函數(shù)取得最小值和最大值時相應(yīng)的x值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sin(α+
π
4
)=
3
5
,sin(α-
π
4
)=
4
5
,求sinα,cosα和tanα的值.

查看答案和解析>>

同步練習(xí)冊答案