(本小題滿分14分)已知函數(shù),
(1) 若,求函數(shù)的極值;
(2) 設(shè)函數(shù),求函數(shù)的單調(diào)區(qū)間;
(3) 若在區(qū)間)上存在一點(diǎn),使得成立,求的取值范圍。

(1)的極小值為; (2) 當(dāng)時(shí),上遞增;時(shí),上遞減,在上遞增;(3) 。

解析試題分析:(1)
上遞減,在上遞增 ∴的極小值為……4分
(2)   ∴
①當(dāng)時(shí),,∴上遞增
②當(dāng)時(shí),
上遞減,在上遞增                 ……8分
(3)區(qū)間上存在一點(diǎn),使得成立
上有解
當(dāng)時(shí),
由(2)知
當(dāng)時(shí),上遞增,
 ∴
②當(dāng)時(shí),上遞減,在上遞增
(。┊(dāng)時(shí), 上遞增
 
無(wú)解
(ⅱ)當(dāng)時(shí), 上遞減

 
(ⅲ)當(dāng)時(shí), 上遞減,在上遞增

,則
遞減  ∴ ∴無(wú)解
無(wú)解
綜上:                      ……14分
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的極值;利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性;利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值。
點(diǎn)評(píng):本題第一問(wèn)考查利用導(dǎo)函數(shù)來(lái)研究函數(shù)的極值.在利用導(dǎo)函數(shù)來(lái)研究函數(shù)的極值時(shí),分三步①求導(dǎo)函數(shù),②求導(dǎo)函數(shù)為0的根,③判斷根左右兩側(cè)的符號(hào),若左正右負(fù),原函數(shù)取極大值;若左負(fù)右正,原函數(shù)取極小值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)是定義在上的單調(diào)增函數(shù),滿足,;
(1)求;
(2)若,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(11分)已知函數(shù)f(x)=x2+2ax-3:
(1)如果f(a+1)-f(a)=9,求a的值;  (2)問(wèn)a為何值時(shí),函數(shù)的最小值是-4。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)已知函數(shù),
(Ⅰ) 若a =1,求函數(shù)的圖像在點(diǎn)處的切線方程;
(Ⅱ)求的單調(diào)區(qū)間;
(Ⅲ)如果當(dāng)時(shí),恒成立,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),求使成立的的取值范圍。(10分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分14分)已知為定義在上的奇函數(shù),當(dāng)時(shí),
(1)求上的解析式;
(2)試判斷函數(shù)在區(qū)間上的單調(diào)性,并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

求證:
方程的根一個(gè)在內(nèi),一個(gè)在內(nèi),一個(gè)在內(nèi).(12分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分16分)已知函數(shù)(其中為常數(shù),)為偶函數(shù).
(1) 求的值;
(2) 用定義證明函數(shù)上是單調(diào)減函數(shù);
(3) 如果,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(1)若,求的值;
(2)若的圖像與直線相切于點(diǎn),求的值;
(3)在(2)的條件下,求函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案