(11分)已知函數(shù)f(x)=x2+2ax-3:
(1)如果f(a+1)-f(a)=9,求a的值; (2)問a為何值時,函數(shù)的最小值是-4。
(1)a="2" ;(2)當a=1或a=-1時函數(shù)的最小值是-4.
解析試題分析:(1)∵f(a+1)-f(a)=9
∴(a+1)2+2a(a+1)-3-(a2+2a-3)=9,
解得a=2 ………………5分
(2)f(x)=x2+2ax-3=(x+a)2-a2-3 ………………8分
∵f(x)的最小值是-4,
∴ - a2-3=-4 a=1或a=-1
∴當a=1或a=-1時函數(shù)的最小值是-4. ………………11分
考點:本題主要考查二次函數(shù)的圖象和性質,待定系數(shù)法,配方法。
點評:中檔題,求二次函數(shù)的解析式,常常利用待定系數(shù)法,研究其最值常常應用配方法。
科目:高中數(shù)學 來源: 題型:解答題
已知實數(shù),函數(shù).
(I)討論在上的奇偶性;
(II)求函數(shù)的單調區(qū)間;
(III)求函數(shù)在閉區(qū)間上的最大值。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分12分)已知函數(shù)
(1)若的單調區(qū)間;
(2)若函數(shù)存在極值,且所有極值之和大于,求a的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(12分)已知函數(shù)
(1)若,求函數(shù)在點(0,)處的切線方程;
(2)是否存在實數(shù),使得的極大值為3.若存在,求出值;若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分12分)
把邊長為的等邊三角形鐵皮剪去三個相同的四邊形(如圖陰影部分)后,用剩余部分做成一個無蓋的正三棱柱形容器(不計接縫),設容器的高為,容積為.
(Ⅰ)寫出函數(shù)的解析式,并求出函數(shù)的定義域;
(Ⅱ)求當x為多少時,容器的容積最大?并求出最大容積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分14分)已知函數(shù),。
(1) 若,求函數(shù)的極值;
(2) 設函數(shù),求函數(shù)的單調區(qū)間;
(3) 若在區(qū)間()上存在一點,使得成立,求的取值范圍。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com