已知實(shí)數(shù),函數(shù).
(I)討論上的奇偶性;
(II)求函數(shù)的單調(diào)區(qū)間;
(III)求函數(shù)在閉區(qū)間上的最大值。

(I)當(dāng)時, 為奇函數(shù);當(dāng)時,為非奇非偶函數(shù);
(II)函數(shù)的增區(qū)間,函數(shù)的減區(qū)間;
(III)當(dāng)時, 的最大值是
當(dāng)時,的最大值是。

解析試題分析:(I)當(dāng)時, ,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/0f/2/hqzk02.png" style="vertical-align:middle;" />,故為奇函數(shù);
當(dāng)時,為非奇非偶函數(shù)      2分
(II)當(dāng)時,故函數(shù)的增區(qū)間       3分
當(dāng)時,
故函數(shù)的增區(qū)間,函數(shù)的減區(qū)間     5分
(III)①當(dāng)時,,
當(dāng)時,,的最大值是
當(dāng)時,,的最大值是      7分
② 當(dāng)時,,
,
所以,當(dāng)時,的最大值是     9分
綜上,當(dāng)時, 的最大值是
當(dāng)時,的最大值是       10分
考點(diǎn):本題主要考查分段函數(shù)的奇偶性、單調(diào)性和最值問題的綜合運(yùn)用能力,考查數(shù)形結(jié)合、分類與整合思想。
點(diǎn)評:中檔題,分段函數(shù)是高考考查的重點(diǎn)函數(shù)類型之一,在不同范圍內(nèi),函數(shù)表達(dá)式不同,能有效地?cái)U(kuò)大考查知識的覆蓋面。二次函數(shù)的圖象和性質(zhì)也是高考考查的重點(diǎn)。更是階段考試的主要題型。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分10分)
已知函數(shù).
(1) 若不等式的解集為,求實(shí)數(shù)的值;
(2) 在(1)的條件下,使能成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/f9/6/1ip1x2.png" style="vertical-align:middle;" />的函數(shù)是奇函數(shù).
(1)求的值;
(2)若對任意的,不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知函數(shù)
(1)若函數(shù)有兩個零點(diǎn),求的取值范圍;
(2)若函數(shù)在區(qū)間上各有一個零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù) (為常數(shù))是實(shí)數(shù)集R上的奇函數(shù),函數(shù)是區(qū)間[-1,1]上的減函數(shù)
(I)求的值;
(II)求的取值范圍;
(III)若上恒成立,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

求函數(shù)的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)是定義在上的單調(diào)增函數(shù),滿足;
(1)求
(2)若,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(11分)已知函數(shù)f(x)=x2+2ax-3:
(1)如果f(a+1)-f(a)=9,求a的值;  (2)問a為何值時,函數(shù)的最小值是-4。

查看答案和解析>>

同步練習(xí)冊答案