【題目】已知函數(shù),,且曲線與在處有相同的切線.
(Ⅰ)求實數(shù)的值;
(Ⅱ)求證:在上恒成立;
(Ⅲ)當時,求方程在區(qū)間內(nèi)實根的個數(shù).
【答案】(Ⅰ);(Ⅱ)證明見解析;(Ⅲ)2.
【解析】
試題分析:
(Ⅰ)函數(shù)有相同的切線,則,,據(jù)此計算可得;
(Ⅱ)構(gòu)造函數(shù),令,原問題等價于在上恒成立,討論函數(shù)的單調(diào)性可得,即在上恒成立.
(Ⅲ)構(gòu)造函數(shù),其中,結(jié)合導函數(shù)討論函數(shù)的單調(diào)性有 .構(gòu)造函數(shù),則在內(nèi)單調(diào)遞減,,據(jù)此討論可得在區(qū)間內(nèi)有兩個零點,即方程在區(qū)間內(nèi)實根的個數(shù)為2.
試題解析:
(Ⅰ)∵,,,
∴.
∵,,
∴,.
∵,即,
∴.
(Ⅱ)證明:設,
.
令,則有.
當變化時,的變化情況如下表:
∴,即在上恒成立.
(Ⅲ)設,其中,
.
令,則有.
當變化時,的變化情況如下表:
∴ .
,
設,其中,則,
∴在內(nèi)單調(diào)遞減,,
∴,故,而.
結(jié)合函數(shù)的圖象,可知在區(qū)間內(nèi)有兩個零點,
∴方程在區(qū)間內(nèi)實根的個數(shù)為2.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)當,求函數(shù)的圖象在點處的切線方程;
(Ⅱ)當時,求函數(shù)的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某工廠生產(chǎn)甲乙兩種產(chǎn)品所得的利潤分別為和 (萬元),它們與投入資金 (萬元)的關(guān)系為:.今將300萬資金投入生產(chǎn)甲乙兩種產(chǎn)品,并要求對甲乙兩種產(chǎn)品的投入資金都不低于75萬元.
(1)設對乙種產(chǎn)品投入資金 (萬元),求總利潤 (萬元)關(guān)于的函數(shù);
(2)如何分配投入資金,才能使總利潤最大?并求出最大總利潤.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某同學用“五點法”畫函數(shù)在某一個周期內(nèi)的圖象時,列表并填入了部分數(shù)據(jù),如下表:
0 | |||||
0 | 2 | 0 | 0 |
(1)請將上表數(shù)據(jù)補充完整;函數(shù)的解析式為= (直接寫出結(jié)果即可);
(2)求函數(shù)的單調(diào)遞增區(qū)間;
(3)求函數(shù)在區(qū)間上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,以橢圓的短軸為直徑的圓與直線相切.
(Ⅰ)求橢圓的方程;
(Ⅱ)設橢圓過右焦點的弦為、過原點的弦為,若,求證:為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙兩臺機床生產(chǎn)同一型號零件.記生產(chǎn)的零件的尺寸為(cm),相關(guān)行業(yè)質(zhì)檢部門規(guī)定:若,則該零件為優(yōu)等品;若,則該零件為中等品;其余零件為次品.現(xiàn)分別從甲、乙機床生產(chǎn)的零件中各隨機抽取50件,經(jīng)質(zhì)量檢測得到下表數(shù)據(jù):
尺寸 | ||||||
甲零件頻數(shù) | 2 | 3 | 20 | 20 | 4 | 1 |
乙零件頻數(shù) | 3 | 5 | 17 | 13 | 8 | 4 |
(Ⅰ)設生產(chǎn)每件產(chǎn)品的利潤為:優(yōu)等品3元,中等品1元,次品虧本1元.若將頻率視為概率,試根據(jù)樣本估計總體的思想,估算甲機床生產(chǎn)一件零件的利潤的數(shù)學期望;
(Ⅱ)對于這兩臺機床生產(chǎn)的零件,在排除其它因素影響的情況下,試根據(jù)樣本估計總體的思想,估計約有多大的把握認為“零件優(yōu)等與否和所用機床有關(guān)”,并說明理由.
參考公式:.
參考數(shù)據(jù):
0.25
0.15
0.10
0.05
0.025
0.010
1.323
2.072
2.706
3.841
5.024
6.635
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com