【題目】在等腰直角中,,分別為,的中點(diǎn),,將沿折起,使得二面角為.
(1)作出平面和平面的交線,并說明理由;
(2)二面角的余弦值.
【答案】(1)見解析(2)
【解析】分析:(1)通過找到解題思路,再根據(jù)線面平行的判定、性質(zhì)以及公理“過平面內(nèi)一點(diǎn),作平面內(nèi)一條直線的平行線有且只有一條”說明理由.
(2)過點(diǎn)作的垂線,垂足為,以F為坐標(biāo)原點(diǎn),F(xiàn)B所在方向?yàn)?/span>軸正方向,建立空間直角坐標(biāo)系,應(yīng)用空間向量,分別求得兩平面的法向量,兩平面法向量夾角
詳解:(1)在面內(nèi)過點(diǎn)作的平行線即為所求.
證明:因?yàn)?/span>,而在面外,在面內(nèi),所以,面.
同理,面,于是在面上,從而即為平面和平面的交線.
(2)由題意可得為二面角的平面角,所以,.
過點(diǎn)作的垂線,垂足為,則面.
以為原點(diǎn),為軸正方向,為單位長度建立空間直角坐標(biāo)系;
則,,,,,
從而,,
設(shè)面的一個(gè)法向量為,
則由得,所以,不妨取.
由面知平面的法向量不妨設(shè)為
于是,,
所以二面角的余弦值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于函數(shù)有如下四個(gè)結(jié)論:
①是偶函數(shù);②在區(qū)間上單調(diào)遞增;③最大值為;④在上有四個(gè)零點(diǎn),其中正確命題的序號是_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,傾斜角為的直線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為 .
(Ⅰ)求直線的普通方程和曲線的直角坐標(biāo)方程;
(Ⅱ)已知點(diǎn),若點(diǎn)的極坐標(biāo)為,直線經(jīng)過點(diǎn)且與曲線相交于兩點(diǎn),設(shè)線段的中點(diǎn)為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)在定義域[﹣5,5]上滿足f(x)﹣f(﹣x)=0,且f(3)=0,當(dāng)x∈[0,5]時(shí),f(x)的圖象如圖所示,則不等式xf(x)<0的解集是_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,且曲線與在處有相同的切線.
(Ⅰ)求實(shí)數(shù)的值;
(Ⅱ)求證:在上恒成立;
(Ⅲ)當(dāng)時(shí),求方程在區(qū)間內(nèi)實(shí)根的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓的方程為.
(1)求過點(diǎn)且與圓相切的直線的方程;
(2)直線過點(diǎn),且與圓交于、兩點(diǎn),若,求直線的方程;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax2+bx+c(a>0),且f(1).
(1)求證:函數(shù)f(x)有兩個(gè)不同的零點(diǎn);
(2)設(shè)x1,x2是函數(shù)f(x)的兩個(gè)不同的零點(diǎn),求|x1﹣x2|的取值范圍;
(3)求證:函數(shù)f(x)在區(qū)間(0,2)內(nèi)至少有一個(gè)零點(diǎn).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com