【題目】某市為了改善居民的休閑娛樂活動場所,現(xiàn)有一塊矩形草坪如下圖所示,已知:米,米,擬在這塊草坪內鋪設三條小路、和,要求點是的中點,點在邊上,點在邊時上,且.
(1)設,試求的周長關于的函數(shù)解析式,并求出此函數(shù)的定義域;
(2)經(jīng)核算,三條路每米鋪設費用均為元,試問如何設計才能使鋪路的總費用最低?并求出最低總費用.
【答案】(1),定義域為;
(2)當米時,鋪路總費用最低,最低總費用為元.
【解析】
(1)利用勾股定理通過,得出,結合實際情況得出該函數(shù)的定義域;
(2)設,由題意知,要使得鋪路總費用最低,即為求的周長最小,求出的取值范圍,根據(jù)該函數(shù)的單調性可得出的最小值.
(1)由題意,在中,,,,,
中,,,,又,
,
所以,即.
當點在點時,這時角最小,求得此時;
當點在點時,這時角最大,求得此時.
故此函數(shù)的定義域為;
(2)由題意知,要求鋪路總費用最低,只需要求的周長的最小值即可.
由(1)得,,
設,,
則,
由,得,,則,
從而,當,即當時,,
答:當米時,鋪路總費用最低,最低總費用為元.
科目:高中數(shù)學 來源: 題型:
【題目】小李在做一份調查問卷,共有4道題,其中有兩種題型,一種是選擇題,共2道,另一種是填空題,共2道.
(1)小李從中任選2道題解答,每一次選1題(不放回),求所選的題不是同一種題型的概率;
(2)小李從中任選2道題解答,每一次選1題(有放回),求所選的題不是同一種題型的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若實數(shù),滿足,則的最小值是( )
A. 0 B. C. -6 D. -3
【答案】C
【解析】
畫出可行域,向上平移目標函數(shù)到可行域邊界的位置,由此求得目標函數(shù)的最小值.
畫出可行域如下圖所示,由圖可知,目標函數(shù)在點處取得最小值為.故選C.
【點睛】
本小題主要考查線性規(guī)劃的知識,考查線性目標函數(shù)的最值的求法,考查數(shù)形結合的數(shù)學思想方法,屬于基礎題.畫可行域時,要注意判斷不等式所表示的范圍是在直線的哪個方位,不一定是三條直線圍成的三角形.還要注意目標函數(shù)化成斜截式后,截距和目標函數(shù)的對應關系,截距最大時,目標函數(shù)不一定取得最大值,可能取得最小值.
【題型】單選題
【結束】
12
【題目】已知,是橢圓長軸上的兩個端點,,是橢圓上關于軸對稱的兩點,直線,的斜率分別為,若橢圓的離心率為,則的最小值為( )
A. 1 B. C. D. 2
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分12分)
已知函數(shù),函數(shù).
(Ⅰ)求函數(shù)的單調區(qū)間;
(Ⅱ)若不等式在上恒成立,求實數(shù)a的取值范圍;
(Ⅲ)若,求證:不等式: .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校進行文科、理科數(shù)學成績對比,某次考試后,各隨機抽取100名同學的數(shù)學考試成績進行統(tǒng)計,其頻率分布表如下.
(Ⅰ)根據(jù)數(shù)學成績的頻率分布表,求理科數(shù)學成績的中位數(shù)的估計值;(精確到0.01)
(Ⅱ)請?zhí)顚懴旅娴牧新?lián)表,并根據(jù)列聯(lián)表判斷是否有90%的把握認為數(shù)學成績與文理科有關:
參考公式與臨界值表:
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一只小蜜蜂位于數(shù)軸上的原點處,小蜜蜂每一次具有只向左或只向右飛行一個單位或者兩個單位距離的能力,且每次飛行至少一個單位.若小蜜蜂經(jīng)過5次飛行后,停在數(shù)軸上實數(shù)3位于的點處,則小蜜蜂不同的飛行方式有多少種?( )
A. 5 B. 25 C. 55 D. 75
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形中,,,以為折痕將△折起,使點到達點的位置,且.
(1)證明:平面平面;
(2)為線段上一點,為線段上一點,且,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設是定義在上的函數(shù),若存在,使得在單調遞增,在上單調遞減,則稱為上的單峰函數(shù),為峰點,包含峰點的區(qū)間稱為含峰區(qū)間,其含峰區(qū)間的長度為:.
(1)判斷下列函數(shù)中,哪些是“上的單峰函數(shù)”?若是,指出峰點;若不是,說出原因;;
(2)若函數(shù)是上的單峰函數(shù),求實數(shù)的取值范圍;
(3)若函數(shù)是區(qū)間上的單峰函數(shù),證明:對于任意的,若,則為含峰區(qū)間;若,則為含峰區(qū)間;試問當滿足何種條件時,所確定的含峰區(qū)間的長度不大于0.6.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了解男性家長和女性家長對高中學生成人禮儀式的接受程度,某中學團委以問卷形式調查了位家長,得到如下統(tǒng)計表:
男性家長 | 女性家長 | 合計 | |
贊成 | |||
無所謂 | |||
合計 |
(1)據(jù)此樣本,能否有的把握認為“接受程度”與家長性別有關?說明理由;
(2)學校決定從男性家長中按分層抽樣方法選出人參加今年的高中學生成人禮儀式,并從中選人交流發(fā)言,求發(fā)言人中至多一人持“贊成”態(tài)度的概率..
參考數(shù)據(jù)
參考公式
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com