【題目】已知正四棱錐的側(cè)棱和底面邊長相等,在這個正四棱錐的條棱中任取兩條,按下列方式定義隨機(jī)變量的值:

若這兩條棱所在的直線相交,則的值是這兩條棱所在直線的夾角大小(弧度制);

若這兩條棱所在的直線平行,則;

若這兩條棱所在的直線異面,則的值是這兩條棱所在直線所成角的大小(弧度制).

(1)求的值;

(2)求隨機(jī)變量的分布列及數(shù)學(xué)期望.

【答案】(1) ;(2)答案見解析.

【解析】試題分析:先利用題意得到幾何體的結(jié)構(gòu)特征,寫出變量的所有可能求值,寫出基本事件數(shù);(1)利用古典概型的概率公式進(jìn)行求解;(2)列表得到分布列,再利用期望公式進(jìn)行求解.

試題解析:根據(jù)題意,該四棱錐的四個側(cè)面均為等邊三角形,底面為正方形,容易得到, 為等腰直角三角形, 的可能取值為: , , ,共種情況,其中: 時,有種; 時,有種; 時,有種;

(1)

(2), ,

根據(jù)(1)的結(jié)論,隨機(jī)變量的分布列如下表:

根據(jù)上表, .

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為為參數(shù)),以坐標(biāo)原點O為極點,x軸正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為

1)寫出曲線C1C2的直角坐標(biāo)方程;

2)已知P為曲線C2上的動點,過點P作曲線C1的切線,切點為A,求|PA|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,圓,如圖,分別交軸正半軸于點.射線分別交于點,動點滿足直線軸垂直,直線軸垂直.

1)求動點的軌跡的方程;

2)過點作直線交曲線與點,射線與點,且交曲線于點.問:的值是否是定值?如果是定值,請求出該定值;如果不是定值,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為參數(shù)),以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程是.

1)求曲線的直角坐標(biāo)方程和直線的普通方程;

2)若直線與曲線交于、兩點,點的坐標(biāo)為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列滿足奇數(shù)項成等差,公差為,偶數(shù)項成等比,公比為,且數(shù)列的前項和為,,.

,.

①求數(shù)列的通項公式;

②若,求正整數(shù)的值;

,,對任意給定的,是否存在實數(shù),使得對任意恒成立?若存在,求出的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項和為Sn,且Snnn+2)(nN*).

1)求數(shù)列{an}的通項公式;

2)設(shè)bn,求數(shù)列{bn}的前n項和Tn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某外國語學(xué)校舉行的(高中生數(shù)學(xué)建模大賽)中,參與大賽的女生與男生人數(shù)之比為,且成績分布在,分?jǐn)?shù)在以上(含)的同學(xué)獲獎.按女生、男生用分層抽樣的方法抽取人的成績作為樣本,得到成績的頻率分布直方圖如圖所示.

(Ⅰ)求的值,并計算所抽取樣本的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);

(Ⅱ)填寫下面的列聯(lián)表,并判斷在犯錯誤的概率不超過的前提下能否認(rèn)為“獲獎與女生、男生有關(guān)”.

女生

男生

總計

獲獎

不獲獎

總計

附表及公式:

其中,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線的焦點為,過點作直線與拋物線交于、兩點,當(dāng)直線軸垂直時長為.

1)求拋物線的方程;

2)若的面積相等,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)討論的極值點的個數(shù);

2)設(shè)函數(shù),為曲線上任意兩個不同的點,設(shè)直線的斜率為,若恒成立,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案